화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.38, No.8, 1578-1591, August, 2021
Pressure drop axial distribution uniformity of the particle bed in the radial bed
E-mail:,
In a radial bed, the uniformity of the pressure drop distribution is investigated by Euler single-phase flow and porous media models under different operating mode (CF-U/Z, CP-U/Z), gas flow rate (120-240m3/h), particle diameter ((0.5-3)exp-3 m) and bed voidage (0.3-0.6). According to the nonuniform index Δ, the uniformity relates to these parameters and improves with increasing total pressure drop of particle bed Δps (sum of the pressure drops of particle bed and gas perforation) or decreasing main channel pressure drop Δpg. Comparing the flow fields with/without particles, Δps is approximately equal to the pressure drop of the particle bed with high-porosity Johnson net, which is well calculated by the Ergun equation. Δpg can be calculated by the modified momentum equation containing k. After changing the wall shear stress and gas-solid axial resistance, it is found that the internal generation factors for k include the influence of gas perforation on boundary layer and the existence of gas axial velocity after perforation. Besides, the global/local k hardly changes with the investigated parameters. The local k is a function of axial position or velocity ratio, which changes obviously at the end of the main channel for the existence of a gas stagnation zone.
  1. Li RJ, Zhu ZB, Chem. React. Eng. Technol., 24, 368 (2008)
  2. Fang DY, Zhu ZB, Chem. Eng., 29, 18 (2001)
  3. Liu WM, Liu XD, Pet. Chem. Equip. Technol., 27, 56 (2006)
  4. Md S, Md H, CMAA, Md M, J. King Saud Univ. - Eng. Sci., 29, 21 (2020)
  5. Dong XJ, He YJ, Shen JN, Ma ZF, Chem. Eng. Sci., 175, 306 (2018)
  6. Liu WL, Li X, Chem. Eng. Sci., 191, 525 (2018)
  7. Chin SY, Hisyam A, Prasetiawan H, Int. J. Chem. React. Eng., 14, 33 (2016)
  8. Zhang CF, Zhu ZB, Xu MB, Zhu BC, J. Chem. Ind. Eng., 67 (1979).
  9. Nekhamkina O, Sheintuch M, Chem. Eng. J., 372, 277 (2019)
  10. Minocha N, Joshi JB, Int. J. Heat Mass Transf., 151, 119420 (2020)
  11. Gilmore N, Hassanzadeh-Barforoushi A, Timchenko V, Menictas C, Appl. Therm. Eng., 183, 116227 (2021)
  12. Li RJ, Chen CY, Wu YQ, Zhu ZB, Chem. Eng., 10, 28 (2009)
  13. Zhang X, Lu J, Qiu L, Zhang X, Wang X, Chinese J. Chem. Eng., 21, 494 (2013)
  14. Li Y, Si H, Wang B, Lu X, Wu XJ, Korean. J. Chem. Eng., 35, 835 (2018)
  15. Jin Y, Yu ZQ, Sun ZF, J. Chem. Ind. Eng., 203 (1984).
  16. Song XQ, Wang ZW, Jin Y, J. Chem. Ind. Eng., 43, 268 (1992)
  17. Wei H, Wang R, Wang D, Wu T, Liu Y, Zhang S, Chinese J. Process Eng., 20, 1406 (2020)
  18. Xu ZG, Yu F, Li RJ, Zhu ZB, Li RJ, Zhang CF, Chinese J. Process Eng., 3, 1 (2003)
  19. Zhang XL, Zhao FX, Fan J, Li BZ, J. Northwest Univ.: Nat. Sci. Ed., 26, 235 (1996)
  20. Wang H, Gu XY, Chem. Eng., 46, 36 (2018)
  21. Mu Z, Wang J, Wang T, Jin Y, Chem. Eng. Process, 42, 409 (2003)
  22. Wang JF, Jing S, Wang TF, Jin Y, Ma XQ, Gao LP, J, Chem. Eng. Chin. Univ., 13, 435 (1999)
  23. Al-Azawii MMS, Jacobsen D, Bueno P, Anderson R, Appl. Therm. Eng., 180, 115804 (2020)
  24. Hong RY, Li HZ, Chinese J. Process Eng., 17, 367 (1996)
  25. Zhu ZR, et al., Chinese J. Process Eng., 10.12034/j.issn.1009-606X.220288.
  26. Amiri L, Ghoreishi-Madiseh SA, Hassani FP, Sasmito AP, Powder Technol., 356, 210 (2019)
  27. Kareeri AA, Zughbi HD, Al-Ali HH, Ind. Eng. Chem. Res., 45(8), 2862 (2006)
  28. He YY, Zhang YX, Chem. React. Eng. Technol., 35, 200 (2019)
  29. Zhapbasbayev UK, Ramazanova GI, Kenzhaliev OB, Thermophys Aeromech+, 22, 229 (2015).
  30. Mousazadeh F, Akker HEAVD, Mudde RF, Chem. Eng. J., 207-208, 675 (2012)
  31. Xiao FZ, Chen HY, Luo ZH, Can. J. Chem. Eng., 93(6), 1033 (2015)
  32. Dai Z, Yu M, Rui D, Zhang X, Zhao Y, Chinese J. Chem. Eng., 26, 484 (2018)
  33. Li Y, Wang M, Cao X, Geng Z, Korean J. Chem. Eng., 37(5), 839 (2020)
  34. Zhang MH, Dong H, Geng ZF, Powder Technol., 354, 19 (2019)
  35. Wang RJ, Fan YP, Lu CX, Ind. Eng. Chem. Res., 56(42), 12203 (2017)