화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.59, No.3, 379-392, August, 2021
Taxus chinensis로부터 파클리탁셀 정제를 위한 개선된 아세톤-물 분별침전 공정 개발 및 그 동역학 및 열역학적 해석
Development of An Improved Acetone-Water Fractional Precipitation Process for Purification of Paclitaxel from Taxus chinensis and Its Kinetic and Thermodynamic Analysis
E-mail:
초록
본 연구에서는 초음파 캐비태이션 버블와 가스 버블를 이용한 파클리탁셀의 개선된 아세톤-물 분별침전 공정을 개발하였다. 전통적 방법에 비해 침전에 소요되는 시간이 20~25배 단축되었다. 또한 파클리탁셀의 침전물 크기는 3.5~5.5배 감소하였으며 파클리탁셀의 확산 계수는 3.5~6.7배 증가하였다. 초음파 캐비태이션 버블을 이용한 침전의 경우 초음파 파워는 증가할수록, 침전 온도는 감소할수록 침전 속도 상수는 증가하였다. 가스 버블을 이용한 침전의 경우 가스 유량은 증가할수록, 침전 온도는 감소할수록 침전 속도 상수는 증가하였다. 열역학적 해석을 통해 개선된 분별침전은 비자발적 발열 공정이었다.
In this study, an improved acetone-water fractional precipitation process for paclitaxel using ultrasonic cavitation bubbles and gas bubbles was developed. Compared to the conventional method, the time required for precipitation has been reduced by 20~25 times. In addition, the particle size of paclitaxel decreased by 3.5~5.5 times and the diffusion coefficient of paclitaxel increased by 3.5~6.7 times. In the case of precipitation using ultrasonic cavitation bubbles, as the ultrasonic power increased and the temperature decreased, the precipitation rate constant increased. In the case of precipitation using gas bubbles, as the gas flow rate increased and the temperature decreased, the precipitation rate constant increased. Thermodynamic parameters revealed the exothermic, irreversible, and nonspontaneous nature of the improved fractional precipitation.
  1. Park JM, Kim JH, Korean Chem. Eng. Res., 59(1), 106 (2021)
  2. Jo JY, Kim JH, Biotechnol. Bioprocess Eng., 24, 818 (2019)
  3. Jang YS, Kim JH, Biotechnol. Bioprocess Eng., 24, 529 (2019)
  4. Ghorbani M, Pourjafar F, Saffari M, Asgari Y, Meta Gene, 26, 100800 (2020)
  5. Sun T, Liu Y, Li M, Yu H, Piao H, Mol. Cell. Probes, 53, 101602 (2020)
  6. Choi HK, Son JS, Na GH, Hong SS, Park YS, Song JY, Korean J. Plant Biotechnol., 29, 59 (2002)
  7. Pyo SH, Choi HJ, Han BH, J. Chromatogr. A, 1123, 15 (2006)
  8. Rao K, Hanuman J, Alvarez C, Stoy M, Juchum J, Davies R, Baxley R, Pharm. Res., 12, 1003 (1995)
  9. Park GY, Kim GJ, Kim JH, J. Ind. Eng. Chem., 21, 151 (2015)
  10. Kang HJ, Kim JH, Biotechnol. Bioprocess Eng., 25, 86 (2020)
  11. Kang HJ, Kim JH, Korean J. Chem. Eng., 36(12), 1965 (2019)
  12. Pyo SH, Park HB, Song BK, Han BH, Kim JH, Process Biochem., 39(12), 1985 (2004)
  13. Jeon KY, Kim JH, Process Biochem., 44(7), 736 (2009)
  14. Kang I, Kim JH, Sep. Purif. Technol., 99, 14 (2012)
  15. Kim JH, Kang IS, Choi HK, Hong SS, Lee HS, Biotechnol. Lett., 22(22), 1753 (2000)
  16. Kim JH, Kang IS, Choi HK, Hong SS, Lee HS, Process Biochem., 37(7), 679 (2002)
  17. Jeon SI, Mun S, Kim JH, Process Biochem., 41(2), 276 (2006)
  18. Lee JY, Kim JH, Sep. Purif. Technol., 103, 8 (2013)
  19. Jeon YL, Kim JH, Korean J. Chem. Eng., 30(10), 1954 (2013)
  20. Lee JY, Kim JH, Process Biochem., 47(12), 2388 (2012)
  21. Lee CG, Kim JH, Process Biochem., 49(8), 1370 (2014)
  22. Seo HW, Kim JH, Process Biochem., 87, 238 (2019)
  23. Jordens J, Coker ND, Gielen B, Gerven TV, Braeken L, Ultrason. Sonochem., 26, 64 (2015)
  24. Gamborg OL, Miller RA, Ojima K, Exp. Cell Res., 50, 151 (1968)
  25. Sim HA, Lee JY, Kim JH, Sep. Purif. Technol., 89, 112 (2012)
  26. Kim JH, Korean Chem. Eng. Res., 58, 273 (2020)
  27. Yook KW, Kim JH, Biotechnol. Bioprocess Eng., 23, 532 (2018)
  28. Kang HJ, Kim JH, Process Biochem., 99, 316 (2020)
  29. Park JN, Kim JH, Process Biochem., 53, 244 (2017)
  30. Dalvi SV, Dave RN, Int. J. Pharm., 387, 172 (2010)
  31. Kalu PN, Waryoba DR, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 464, 68 (2007)
  32. Yang JW, Kim JH, Korean Chem. Eng. Res., 57(2), 210 (2019)
  33. Cho DN, Kim JH, Korean Chem. Eng. Res., 58(1), 127 (2020)
  34. Park SH, Kim JH, Korean Chem. Eng. Res., 58(1), 113 (2020)
  35. Kang SS, Kim JH, Biotechnol. Bioprocess Eng., 25, 336 (2020)
  36. Kim HS, Kim JH, Korean Chem. Eng. Res., 57(2), 219 (2019)
  37. Nam HW, Kim JH, Appl. Chem. Eng., 31(2), 208 (2020)
  38. Saha P, Chowdhury S, Available from: http://www.intechopen.com/books/thermodynamics/insight-into-adsorption-thermodynamics (2011).
  39. Kim TW, Kim JH, Biotechnol. Bioprocess Eng., 21, 751 (2016)
  40. Wohgemuth K, Kordylla A, Ruether F, Schembecker G, Chem. Eng. Sci., 64(19), 4155 (2009)
  41. Schueller BS, Yang RT, Ind. Eng. Chem. Res., 40, 4912 (2011)
  42. Royset J, Ryum N, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 396, 409 (2005)
  43. Lee CG, Kim JH, Process Biochem., 59, 216 (2017)
  44. Kang HJ, Kim JH, Biotechnol. Bioprocess Eng., 24, 513 (2019)
  45. Lee SH, Kim JH, Process Biochem., 76, 187 (2019)
  46. Bang SY, Kim JH, Biotechnol. Bioprocess Eng., 22, 620 (2017)
  47. Shin HS, Kim JH, Process Biochem., 51(7), 917 (2016)
  48. Dogan M, Abak H, Alkan M, J. Hazard. Mater., 164(1), 172 (2009)
  49. Celekli A, Ilgun G, Bozkurt H, Chem. Eng. J., 191, 228 (2012)