Polymer(Korea), Vol.45, No.4, 601-609, July, 2021
Putrescine의 존재 하에 중성 pH 조건에서의 가교 히알루론산 하이드로젤의 합성 및 특성
Synthesis and Characteristic of Cross-linked Hyaluronic Acid Hydrogels with Putrescine under the Neutral pH Condition
E-mail:
초록
본 연구는 히알루론산의 가교 반응 중 분해를 최소화하기 위해, 중성 pH 조건에서 히알루론산 하이드로젤을 제조하는 것이다. 가교 반응은 diamine인 putrescine의 존재 하에, 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride(DMTMM) 및 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide(EDC)/N-hydroxysuccinimide(NHS)를 각각 가교제로 사용하여 2종류의 히알루론산 하이드로젤을 제조하였다(HPDM 및 HPEN). FTIR 분석을 통해 두 가교제 모두 putrescine의 존재 하에, 아마이드기를 형성했음을 확인하였다. 반응에 따른 하이드로젤의 형태 및 유변학적 특성을 주사전자현미경 및 레오미터를 통해 확인하였다. 제조된 하이드로젤의 팽윤 특성 및 분해 거동은 가교제의 종류 및 putrescine/가교제의 몰비에 직접적인 영향을 받았다. 하이드로젤에서의 인체 섬유아세포에 대한 세포 적합성은 MTTassay를 통해 확인하였다. 결론적으로, DMTMM으로 가교한 HPDM의 가교 효율 및 생체 적합성이 EDC/NHS으로 가교한 HPEN 보다 더 우수하였다.
This study is to fabricate hyaluronic acid (HyA) hydrogels under the neutral pH condition in order to minimize the degradation of HyA during the cross-linking reaction. Two kinds of HyA hydrogels (HPDM or HPEN), were prepared with 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride (DMTMM) or 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) as cross-linking agents, respectively, in the presence of putrescine as a diamine. Amide bond formation of hydrogels in the presence of putrescine was confirmed by FT-IR analysis. The morphology and rheological property of the hydrogels were studied through a scanning electron microscope and a rheometer, respectively. The swelling property and the degradation behavior of the hydrogels were affected by the two kinds of cross-linking agents and the molar ratio of the putrescine/cross-linking agents. Cytocompatibility of these hydrogels on human dermal fibroblast was confirmed by MTT assay. In conclusion, the cross-linking efficiency and the biocompatibility of HPDM cross-linked by DMTMM were better than those of HPEN cross-linked by EDC/NHS.
Keywords:neutral pH condition;putrescine;hyaluronic acid;4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride;1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide
- Collins MN, Birkinshaw C, Carbohydr. Polym., 92, 1262 (2013)
- Jung SW, Oh SH, Lee IS, Byun JH, Lee JH, Tissue Eng. Regen. Med., 16, 479 (2019)
- Im GI, Tissue Eng. Regen. Med., 1 2019.
- Lyu HZ, Lee JH, Biomaterials Res., 24, 5 (2020)
- Choi JS, Oh SH, Kim YM, Lim JY, Tissue Eng. Regen. Med., 17, 651 (2020)
- Min SJ, Kim SW, Lee TH, Kwon IK, Son TI, Polym. Korea, 44(4), 451 (2020)
- Sung YK, Kim SW, Biomaterials Res., 24, 1 (2020)
- Yang JM, Kim HJ, Cho BK, Polym. Korea, 44, 21 (2020)
- Hong BM, Park SA, Park WH, Biomaterials Res., 23, 1 (2019)
- Xu X, Jha AK, Harrington DA, Farach-Carson MC, Jia X, Soft Mater., 8, 3280 (2012)
- Khunmanee S, Jeong Y, Park H, J. Tissue Eng., 8, 2041731417726464 2017.
- Yang B, Guo X, Zang H, Liu J, Carbohydr. Polym., 131, 233 (2015)
- Shimojo AA, Pires A, Lichy R, Santana MH, J. Brazil. Chem. Soc, 26, 506 (2015)
- Ibrahim S, Kang QK, Ramamurthi A, J. Biomed. Mater. Res. A, 94, 355 (2010)
- Calles JA, Ressia JA, Llabot JM, Valles EM, Palma SD, Sci. Pharm., 84, 61 (2016)
- Kirk JF, Ritter G, Finger I, Sankar D, Reddy JD, Talton JD, et al>, Biomatter, 3, e25633 (2013)
- Cao W, Sui J, Ma M, Xu Y, Lin W, Chen Y, Man Y, Sun Y, Fan Y, Zhang X, J. Mater. Chem. B, 7, 4413 (2019)
- Nakajima N, Ikada Y, Bioconjugate Chem., 6, 123 (1995)
- Bulpitt P, Aeschlimann D, J. Biomed. Mater. Res. A, 47, 152 (1999)
- Kunishima M, Kawachi C, Monta J, Terao K, Iwasaki F, Tani S, Tetrahedron, 55, 13159 (1999)
- Farkas P, Bystricky S, Carbohydr. Polym., 68, 187 (2007)
- Raw SA, Tetrahedron Lett., 50, 946 (2009)
- D’este M, Eglin D, Alini M, Carbohydr. Polym., 108, 239 (2014)
- Til H, Falke H, Prinsen M, Willems M, Food Chem. Toxicol., 35, 337 (1997)
- Farriol M, Segovia-Silvestre T, Castellanos JM, Venereo Y, Orta X, Nutrition, 17, 934 (2001)
- Seliktar D, Science, 336(6085), 1124 (2012)
- Tomihata K, Ikada Y, J. Biomed. Mater. Res. B, 37, 243 (1997)