Polymer(Korea), Vol.45, No.4, 560-567, July, 2021
Copper-Exfoliated Graphite Nanoplatelet 하이브리드 입자를 이용한 PC 복합체의 기계적 성질과 열전도도
Mechanical Properties and Thermal Conductivity of PC Composite Containing Copper-Exfoliated Graphite Nanoplatelet Hybrid Powder
E-mail:
초록
본 연구에서는 폴리카보네이트/구리-팽창흑연 나노판(PC/Cu-xGnP) 복합체가 제조되었다. PC 복합체 제조에 앞서 두 종류의 Cu-xGnP 하이브리드 입자가 제조 되었는데 하나는 xGnP가 구리에 완전 삽입된 Cu-xGnP 입자이고 다른 하나는 부분 삽입된 Cu-xGnP 입자이다. 두 종류의 하이브리드 입자의 삽입 정도는 투과 전자 현미경으로 확인되었다. 구리와 xGnP를 이용하여 제조된 PC/Cu 및 PC/xGnP 복합체와 비교하여 Cu-xGnP로 제조된 PC/CuxGnP복합체의 기계적 성질과 열전도도가 더 우수하였다. 부분 삽입된 PC/Cu-xGnP 복합체의 열전도도는 완전 삽입된 PC/Cu-xGnP 복합체보다 모든 함량에서 높게 관찰되었다. 반면에 기계적인 성질에서는 완전 삽입된 PC/CuxGnP복합체가 부분 삽입된 PC/Cu-xGnP 복합체보다 우수하였다.
Polycarbonate/copper-exfoliated graphite nanoplatelets (PC/Cu-xGnP) composites were prepared. Prior to the preparation of the composite, two types of Cu-xGnP hybrid powder were prepared: one is fully inserted xGnP and the other is partially inserted xGnP in Cu-flakes. TEM images of hybrid powder showed the partially and fully inserted xGnP in Cu-flakes. On comparing with the mechanical properties and thermal conductivity, PC/Cu-xGnP composite was better than those of PC/Cu and PC/xGnP composites. The thermal conductivity of the partially inserted PC/Cu-xGnP composite was higher than that of the fully inserted PC/Cu-xGnP composite at the same filler concentration. On the other hand, the fully inserted PC/Cu-xGnP composite was superior to the partially inserted PC/Cu-xGnP composite in terms of mechanical properties.
Keywords:polycarbonate;copper-exfoliated graphite nanoplatelets;composite;thermal conductivity;mechanical properties
- Chung DDL, J. Mater. Sci., 37(8), 1475 (2002)
- Kim H, Macosko CW, Polymer, 50(15), 3797 (2009)
- Yoonessi M, Gaier JR, ACS Nano, 4, 7211 (2010)
- Muller MT, Hilarius K, Liebscher M, lellinger D, Alig I, Potschke P, Materials, 10, 545 (2017)
- Oyarzabal A, Christiano-Tassi A, Laredo E, Newman D, et al., J. Appl. Polym. Sci., 134, 44654 (2017)
- King JA, Via MD, Morrison FA, Wiese KR, Beach EA, Cieslinski MJ, Bogucki GR, J. Compos. Mater., 46, 1029 (2011)
- Zakaulla M, Parveen F, Harish A, Ahmad N, Mater. Today, 26, 296 (2020)
- Steurer P, Wissert R, Thomann R, Mulhaupt R, Macromol. Rapid Commun., 30, 316 (2009)
- Potts JR, Murali S, Zhu YW, Zhao X, Ruoff RS, Macromolecules, 44(16), 6488 (2011)
- Gedler G, Antunes M, Realinho V, Velasco JI, Polym. Degrad. Stabil., 97, 1297 (2012)
- Via MD, King JA, Keith JM, Bogucki GR, J. Appl. Polym. Sci., 124(1), 182 (2012)
- Yoon SH, Jun HT, RSC Adv., 7, 45902 (2017)
- Kim SY, Ye JN, Yu J, Compos. Pt. A-Appl. Sci. Manuf., 69, 219 (2015)
- Gu J, Xie C, Li H, Dang J, Geng W, Zhang Q, Polym. Compos., 35, 1087 (2014)
- Alam FE, Dai W, Yang M, Du S, Li X, Yu J, Jiang N, Lin CT, J. Mater. Chem. A, 48, 6164 (2017)
- Wu K, Lei C, Huang R, Yang W, Chai S, Geng C, Chen F, Fu Q, ACS Appl. Mater. Interfaces, 9, 7637 (2017)
- Chu K, Jia C, Phys. Status Solidi A-Appl. Res., 211, 184 (2014)
- Li MX, Che HW, Liu XY, Liang SX, Xie HL, J. Mater. Sci., 49(10), 3725 (2014)
- Tang Y, Yang X, Wang R, Li M, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 599, 247 (2014)
- Li W, Li D, Fu Q, Pan C, RSC Adv., 5, 80428 (2015)
- Gao X, Yue HY, Guo EJ, Zhang H, Lin XY, Yao LH, Wang B, Powder Technol., 301, 601 (2016)
- Saboori A, Pavese M, Badini C, Fino PA, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 49, 333 (2018)
- Lia W, Lia D, Fua Q, Pan C, RSC Adv., 5, 80428 (2015)
- Park HJ, Badakhsh A, Im IT, Kim MS, Park CW, Appl. Therm. Eng., 107, 907 (2016)
- Hwang SH, Bang DS, Yoon KH, Park YB, Lee DY, Jeong SS, J. Compos. Mater., 44, 2711 (2010)
- Kim JS, Lee YS, Yoon KH, Han JH, Polym. Korea, 45, 1 (2021)