화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.31, No.6, 345-352, June, 2021
Ni Nanoparticle-Graphene Oxide Composites for Speedy and Efficient Removal of Cr(VI) from Wastewater
E-mail:,
In this study, Ni nanoparticle supported by graphene oxide (GO) (Ni-GO) is successfully synthesized through hydrothermal synthesis and calcination, and Cr(VI) is extracted from aqueous solution. The morphology and structure of Ni- GO composites are characterized by scanning electron microscopy (SEM), trans mission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). High-resolution transmission electron microscopy (HRTEM) and XRD confirms the high dispersion of Ni nanoparticle after support by GO. Loading Ni on GO can obviously enhance the stability of Ni-GO composites. It can be calculated from TGA that the mass percentage of Ni is about 60.67%. The effects of initial pH and reaction time on Cr(VI) removal ability of Ni-GO are investigated. The results indicate that the removal efficiency of Cr(VI) is greater than that of bared GO. Ni-GO shows fast removal capacity for Cr(VI) (<25 min) with high removal efficiency. Dynamic experiments show that the removal process conforms to the quasi-second order model of adsorption, which indicates that the rate control step of the removal process is chemical adsorption. The removal capacity increases with the increase of temperature, indicating that the reaction of Cr(VI) on Ni-GO composites is endothermic and spontaneous. Combined with tests and characterization, the mechanism of Cr(VI) removal by rapidly adsorption on the surface of Ni-GO and reduction by Ni nanoparticle is investigated. The above results show that Ni-GO can be used as a potential remediation agent for Cr(VI)-contaminated groundwater.
  1. Li J, Wang XX, Zhao GX, Chen CL, Chai ZF, Alsaedi A, Hayat T, Wang XK, Chem. Soc. Rev., 47, 2322 (2018)
  2. Fan LL, Luo CN, Sun M, Qiu HM, J. Mater. Chem., 47, 24577 (2012)
  3. Wang YQ, Zou BF, Gao T, Wu XP, Lou SY, Zhou SM, J. Mater. Chem., 22, 9034 (2012)
  4. Hu LY, Chen LX, Liu MT, Wang AJ, Wu LJ, Feng JJ, J. Colloid Interface Sci., 493, 94 (2017)
  5. Rapti S, Sarma D, Diamantis SA, Skliri E, et al., J. Mater. Chem. A, 5, 14707 (2017)
  6. Smith AH, Steinmaus CM, Annu. Rev. Public Health, 30, 107 (2009)
  7. Qin F, Wang R, Li G, Tian F, Zhao H, Chen R, Catal. Commun., 42, 14 (2013)
  8. Vincent JB, Accounts Chem. Res., 33, 503 (2000)
  9. Dinda D, Gupta A, Saha SK, J. Mater. Chem. A, 1, 11221 (2013)
  10. Liu L, Xue J, Shan X, He G, Wang X, Chen H, Catal. Commun., 75, 13 (2016)
  11. Yadav M, Xu Q, Chem. Commun., 49, 3327 (2013)
  12. Geim AK, Novoselov KS, Nat. Mater., 6(3), 183 (2007)
  13. Chien CT, Li SS, Lai WJ, Yeh YC, Chen HA, et al., Angew. Chem.-Int. Edit., 51, 6662 (2012)
  14. Huang ZW, Li ZJ, Zheng LR, Wu WS, Chai ZF, Shi WQ, Environ. Pollut., 248, 82 (2019)
  15. Kong QP, Wei JY, Hu Y, Wei CH, J. Hazard. Mater., 363, 161 (2019)
  16. Zhu WT, Wu CJ, Chang YX, Cheng HC, Yuk CB, Mater. Lett., 237, 1 (2019)
  17. Englert JM, Dotzer C, Yang G, Schmid M, Papp C, et al., Nat. Chem., 3, 279 (2011)
  18. Li YA, Chen YJ, Tai NH, Langmuir, 29(26), 8433 (2013)
  19. Zeynizadeh B, Karami S, Polyhedron, 166, 196 (2019)
  20. Wu ZS, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng HM, ACS Nano, 4, 3187 (2010)
  21. Dong BT, Zhang X, Xu X, Gao GX, Ding SJ, Li J, Li BB, Carbon, 80, 222 (2014)
  22. Bi H, Cui HL, Lin TQ, Huang FQ, Carbon, 91, 153 (2015)
  23. Chen LL, Feng SJ, Zhao DL, Chen SH, Li FF, Chen CL, J. Colloid Interface Sci., 490, 197 (2017)
  24. Balamurugan J, Thanh TD, Heo SB, Kim NH, Lee JH, Carbon, 94, 962 (2015)
  25. Kudin KN, Ozbas B, Schniepp HC, Prudhomme RK, Aksay IA, Car R, Nano Lett., 8, 36 (2008)
  26. Chen J, Sheng KX, Luo PH, Li C, Shi GQ, Adv. Mater., 24(33), 4569 (2012)
  27. Ahmed T, Xiu SN, Wang LJ, Shahbazi A, Fuel, 211, 566 (2018)
  28. Zhao DL, Gao X, Chen SH, Xie FZ, Feng SJ, Alsaedi A, Hayat T, Chen CL, J. Colloid Interface Sci., 524, 129 (2018)
  29. Zhao Y, Zhao DL, Chen CL, Wang XK, J. Colloid Interface Sci., 405, 211 (2013)
  30. Qu Z, Kou LQ, Wang TC, Ang DL, Hu SB, J. Environ. Manage., 201, 378 (2017)
  31. Wu CH, J. Hazard. Mater., 144(1-2), 93 (2007)
  32. Li J, Chen CL, Zhao Y, Hu J, Shao DD, Wang XK, Chem. Eng. J., 229, 296 (2013)
  33. Zhao DL, Chen LL, Xu MWC, Feng SJ, Ding Y, Wakeel M, Alharbi NS, Chen CL, ACS Sustainable Chem. Eng., 5, 10290 (2017)
  34. Bhowmik K, Mukherjee A, Mishra MK, De G, Langmuir, 30(11), 3209 (2014)
  35. Dinu MV, Dragan ES, Chem. Eng. J., 160(1), 157 (2010)
  36. Zhang ZY, Xu PP, Weng Y, Zhou YY, Xiong SS, J. Alloy. Compd., 847, 156366 (2020)
  37. Zhang Q, Zhao DL, Ding Y, Chen Y, Li FF, Alsaedi A, Hayat T, Chen CL, J. Clean Prod., 230, 1305 (2019)
  38. Fang ZQ, Qiu XH, Chen JH, Qiu XQ, J. Hazard. Mater., 185(2-3), 958 (2011)
  39. Zhang Y, Yang M, Dou XM, He H, Wang DS, Environ. Sci. Technol., 39, 7246 (2005)
  40. Cao YH, Huang JN, Li YH, Qiu S, Liu JR, et al., Carbon, 109, 640 (2016)