화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.38, No.7, 1333-1347, July, 2021
Multiscale modeling and integration of a combined cycle power plant and a two-tank thermal energy storage system with gPROMS and SimCentral
E-mail:,
With different computational tools, simulations ranging from detailed and rigorous mathematical models to overall process plant of black box models can be carried out. Whereas most of these computational tools cannot practically execute different scales of models at the same time, it becomes relevant to devise strategies in coupling two or more of them for better analysis of processes. In this light, this study proposes Excel as an interactive scale bridge of data exchange to aid the multiscale modeling and dynamic simulation of combined cycle (CC) power plant integration with two-tank thermal energy storage (TES) system using gPROMS and SimCentral. This is relevant to analyze not only the performance of TES, but the feasibility of its integration with CC in augmenting energy production to meet daily power demand. The integrated system modeled in four operational modes of CC increased in power generation by 7.3MW at an efficiency of 98.30%. The study validated the usefulness of the TES integration of 99.66% efficiency. The research results provide a communication strategy for different computational tools and an approach to effectively increase CC power production to meet varying daily demand.
  1. Khanna M, Rao MD, Annu. Rev. Resour. Econ., 1, 568 (2009)
  2. Johnson M, Vogel J, Hempel M, Dengel A, Seitz M, Hachmann B, Energy Procedia., 73, 281 (2015)
  3. Interactive Gas Turbine Portfolio Brochure, Siemens, https://assets.new.siemens.com/siemens/assets/api/uuid:10f4860b140b2456f05d32629d8d758dc00bcc30/gas-turbines-siemens-interactive.pdf.
  4. Rahman A, Smith AD, Fumo N, Appl. Therm. Eng., 100, 668 (2016)
  5. Cruickshank CA, Evaluation of a stratified milti-tank thermal storage for solar heating applications, PhD Thesis, Queen’s University (2009).
  6. Rodriguez I, Perez-Segarra CD, Lehmkuhl O, Oliva A, Appl. Energy, 109, 402 (2013)
  7. Garcia IL, Alvarez JL, Blanco D, Sol. Energy, 85(10), 2443 (2011)
  8. Parrado C, Marzo A, Fuentealba E, Fernandez AG, Renew. Sust. Energ. Rev., 57, 505 (2016)
  9. Heller L, Gauche P, Sol. Energy, 93, 345 (2013)
  10. Daniel C, Natalie S, Charles F, Trans. Amer. Nucl. Soc., 116(2), 837 (2017)
  11. Edwards J, Bindra H, Sabharwall P, Ann. Nucl. Energy, 96, 104 (2016)
  12. Maurstad O, LFEE, 2005-002 WP (2005), https://sequestration.mit.edu/pdf/LFEE_2005-002_WP.pdf.
  13. Alqahtani BJ, Patino-Echeverri D, Appl. Energy, 169, 927 (2016)
  14. Garbrecht O, Bieber M, Kneer R, Energy, 118, 876 (2017)
  15. Johnson M, Vogel J, Hempel M, Dengel A, Seitz M, Hachmann B, Energy Procedia, 73, 281 (2015)
  16. Verma P, Varun, Singal SK, Renew. Sust. Energ. Rev., 12(4), 999 (2008)
  17. Vasilios V, US Patent, 61,954,619 (2014).
  18. Drost K, Antoniak Z, Brown D, Energy Conv. Eng. Con., 4, 251 (1990)
  19. Drost MK, Antoniak ZI, Brown D, Somansundaram S, US. Dep. Energy, PNL-7403 (1990).
  20. Tao WQ, He YL, IHTC 14. 8, 671 (2010), https://doi.org/10.1115/IHTC14-23408.
  21. Krzhizhanovskaya VV, Groen D, Bozak B, Hoekstra AG, Procedia. Comput. Sci., 51, 1082 (2015)
  22. Helmns A, Carey VP, J. Therm. Sci. Eng. Appl., 10(5), 051004 (2018)
  23. Parsazadeh M, Duan XL, Appl. Energy, 216, 142 (2018)
  24. Fasano M, Borri D, Cardellini A, Alberghini M, Morciano M, Chiavazzo E, Asinari P, Energy Procedia, 126, 509 (2017)
  25. Lee JC, Kofi OS, Kim SY, Hong SG, Oh M, J. Eng. Sci. Technol., 10, 48 (2015)
  26. Morales-Rodriguez R, Gani R, Comput. Aided Chem. Eng., 24, 207 (2007)
  27. Morales-Rodriguez R, Gani R, Comput. Aided Chem. Eng., 26, 495 (2007)
  28. Morales-Rodriguez R, Gani R, Dechelotte S, Vacher A, Baudouin O, Chem. Eng. Res. Des., 86(7A), 823 (2008)
  29. Jaworski Z, Zakrzewska B, Comput. Chem. Eng., 35(3), 434 (2011)
  30. Heidebrecht P, Pfafferodt M, Sundmacher K, Chem. Eng. Sci., 66(19), 4389 (2011)
  31. Vlachos DG, Mhadeshwar AB, Kaisare NS, Comput. Aided Chem. Eng., 30(10-12), 1712 (2006)
  32. Pozzetti G, Peters B, Int. J. Multiph. Flow, 99, 186 (2018)
  33. Park HM, Int. J. Heat Mass Transf., 75, 545 (2014)
  34. Oh DH, Jeon RY, Kim JH, Lee CH, Oh M, Kim KJ, Cryst. Growth Des., 19(2), 658 (2019)
  35. Vo ND, Jung MY, Oh DH, Park JS, Moon I, Oh M, Combust. Flame, 189, 12 (2018)
  36. Lee GH, Vo ND, Jeon RY, Han SW, Hong SU, Oh M, Korean J. Chem. Eng., 35(9), 1791 (2018)
  37. Lee HH, Lee JC, Joo YJ, Oh M, Lee CH, Appl. Energy, 131, 425 (2014)
  38. Electrical energy storage, Technical Report, International Electrochemical Commission, http://www.iec.ch/whitepaper/pdf/iecWPenergystorage-LR-en.pdf (2011).
  39. Weinan E, Engquist B, Li X, Ren W, Vanden-Eijnden E, Commun. Comput. Phys., 2(3), 367 (2007)
  40. Ingram GD, Cameron IT, Hangos KM, Chem. Eng. Sci., 59(11), 2171 (2004)
  41. Dada JO, Mendes P, Integr. Biol., 3(2), 86 (2011)
  42. Yang AD, Marquardt W, Comput. Chem. Eng., 33(4), 822 (2009)
  43. Hoekstra A, Chopard B, Coveney P, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 372(2021), 201303 (2014)
  44. Chopard B, Borgdorff J, Hoekstra AG, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 372(2021), 201303 (2014)
  45. Zitney SE, CAPE-OPEN integration for advanced process engineering co-simulation, Final Report. DOE/NETL-IR-2007.
  46. Zaversky F, Garcia-Barberena J, Sanchez M, Astrain D, Sol. Energy, 93, 294 (2013)
  47. Jarvis RB, Pantelides CC, Robust dynamic simulation of chemical engineering processes, PhD Thesis, Imperial College London University (1993).
  48. Shelton W, Lyons J, Shell gasifier IGCC base cases, Report. NETL PED-IGCC-98-002 (2000).
  49. Boukelia TE, Mecibah MS, Kumar BN, Reddy KS, Energy, 88, 292 (2015)
  50. Dunn RI, Hearps PJ, Wright MN, Proc. IEEE, 100(2), 504 (2012)
  51. Lee WS, Lee JC, Oh HT, Baek SW, Oh M, Lee CH, Energy, 134, 731 (2017)
  52. Schulte-Fischedick J, Tamme R, Herrmann U, Ameri. Soc. of Mech. Eng., 2, 515 (2008).