Journal of Industrial and Engineering Chemistry, Vol.98, 425-434, June, 2021
Change of physical properties with the slurry-phase hydrocracking reaction of vacuum residue
E-mail:,
The physical properties (density, kinematic viscosity, surface tension, and hydrogen solubility) and their correlations for a slurry-phase hydrocracking reaction were investigated with a vacuum residue (VR, as a feedstock) and hydrocracked products from VR conversion of 32.3%, 73.9% at different temperature and pressure conditions. As a result, the density, kinematic viscosity, and surface tension of the product decreased with converting VR, while the solubility of hydrogen increased. And the dependence of product properties on temperature showed to be similar to feedstock. Based on the measured data, the empirical correlations that can predict from VR to products were obtained with R-square of 0.9930 by modifying the existing correlations. From these properties change, it was confirmed that the hydrocracking temperature and the degree of the hydrocracking conversion of VR is the most dominant parameters to govern the change of physical properties. Finally, it was found that the mass transfer rate of hydrogen into oil is important because the hydrogen solubility (0.8 mol H2/kg feed or 0.16 wt.% on the feed weight at 160 bar, 410 ℃) on the liquid phase is much smaller than the chemical consumption of hydrogen (about 2.3 wt.% on the feed weight) for near full conversion of VR.
Keywords:Physical properties;Slurry-phase hydrocraking;Vacuum residue;Hydrocracked products;Hydrogen solubility;Bubble column reactor
- Caniaz RO, Erkey C, Chem. Eng. Res. Des., 92(10), 1845 (2014)
- Lim SH, Go KS, Nho NS, Lee JG, Fuel, 234, 305 (2018)
- Bellussi G, Rispoli G, Landoni A, Millini R, Molinari D, Montanari E, Moscotti D, Pollesel P, J. Catal., 308, 189 (2013)
- Schweitzer JM, Kressmann S, Chem. Eng. Sci., 59(22-23), 5637 (2004)
- Stratiev D, Shishkova I, Tankov I, Pavlova A, J. Pet. Sci. En., 178, 227 (2019)
- Kang KH, Nguyen NT, Seo PW, Seo H, Kim GT, Kang N, Lee CW, Han SJ, Chung MC, Park S, J. Catal., 384, 106 (2020)
- Calderon CJ, Ancheyta J, Fuel, 244, 258 (2019)
- Al-Attas TA, Ali SA, Zahir MH, Xiong QG, Al-Bogami SA, Malaibari ZO, Razzak SA, Hossain MM, Energy Fuels, 33(9), 7917 (2019)
- Liu D, Du H, Zhang JC, Que GH, Energy Fuels, 29(5), 3353 (2015)
- Coronel-Garcia M, de la Torre AR, Dominguez-Esquivel J, Melo-Banda J, Martinez-Salazar A, Fuel, 283, 118930 (2021)
- Angeles MJ, Leyva C, Ancheyta J, Ramirez S, Catal. Today, 220-222, 274 (2014)
- Alvarez P, Browning B, Jansen T, Lacroix M, Geantet C, Pitault I, Tayakout-Fayolle M, Fuel Process. Technol., 185, 68 (2019)
- Sanoja M, On Hydrocracking of Vacuum Residues in Slurry Reactors. PhD Thesis, University of Pittsburgh, 2012.
- Gotz M, Lefebvre J, Mors F, Ortloff F, Reimert R, Bajohr S, Kolb T, Chem. Eng. J., 308, 1209 (2017)
- Zhang H, Yang G, Sayyar A, Wang T, Chem. Eng. J., 386, 121484 (2019)
- Behkish A, Men ZW, Inga JR, Morsi BI, Chem. Eng. Sci., 57(16), 3307 (2002)
- Wilkinson PM, Spek AP, van Dierendonck LL, AIChE J., 38(4), 544 (1992)
- Behkish A, Lemoine R, Oukaci R, Morsi BI, Chem. Eng. J., 115(3), 157 (2006)
- Grover G, Rode C, Chaudhari R, Can. J. Chem. Eng., 64(3), 501 (1986)
- Ozturk S, Schumpe A, Deckwer WD, AIChE J., 33, 1473 (1987)
- Quail B, Hill G, Jha KN, Ind. Eng. Chem. Res., 27, 519 (1988)
- Behzadfar E, Hatzikiriakos SG, Fuel, 116, 578 (2014)
- Chung FT, Jones RA, Nguyen HT, SPE Reservoir Eng., 3(03), 822 (1988)
- Sayegh S, Rao D, Kokal S, Najman J, J. Can. Pet. Technol., 29, 06 (1990)
- Hasan SW, Ghannam MT, Esmail N, Fuel, 89(5), 1095 (2010)
- Li XS, Elliott JAW, McCaffrey WC, Yan D, Li D, Famulak D, J. Colloid Interface Sci., 287(2), 640 (2005)
- Alomair O, Elsharkawy A, Alkandari H, J. Pet. Sci. Eng., 120, 102 (2014)
- Gray MR, Upgrading Oilsands Bitumen and Heavy Oil, University of Alberta, 2015.
- Kokal SL, Sayegh SG, J. Pet. Sci. Eng., 9(4), 289 (1993)
- Svrcek WY, Mehrotra AK, J. Can. Pet. Technol., 21(04) (1982)
- Asprino OJ, Elliott JAW, McCaffrey WC, Gray MR, Energy Fuels, 19(5), 2026 (2005)
- Millette J, Scott DS, Radlein D, Piskorz J, Majerski P, Reilly IG, deBruijn TJW, Can. J. Chem. Eng., 82(5), 1004 (2004)
- Drelich J, Miller JD, Fuel, 73(9), 1504 (1994)
- Deshpande D, Deo M, Hanson F, Fuel Process. Technol., 32(1-2), 3 (1992)
- Rana MS, Samano V, Ancheyta J, Diaz J, Fuel, 83(9), 1216 (2007)
- Cai HY, Shaw J, Chung K, Fuel, 80(8), 1055 (2001)
- Lal D, Otto FD, Mather AE, Fuel, 78(12), 1437 (1999)
- Ji SF, Wang ZX, Guo AJ, Zhou Y, Chen K, J. Chem. Eng. Data, 58(12), 3453 (2013)
- Lim SH, Go KS, Nho NS, Kim YH, Kwon EH, Kim KH, Lee JG, J. Pet. Sci. Eng., 107713 (2020).
- Martinez J, Sanchez JL, Ancheyta J, Ruiz RS, Catal. Rev., 52(1), 60 (2010)
- Andreas J, Hauser E, Tucker W, J. Phys. Chem., 42(8), 1001 (2002)
- Fordham S, Proc. R. Soc. Lond. Ser. A: Math. Phys. Sci., 194(1036), 1 (1948)
- Chang MY, Chem. Eng. Sci., 46(10), 2639 (1991)
- Soriano JP, University of Pittsburgh, 2005.
- Tekie Z, Li JJ, Morsi BI, Chang MY, Chem. Eng. Sci., 52(9), 1541 (1997)
- Yaws CL, Chemical Properties Handbook, McGraw-Hill, 1999.
- Galarraga CE, Pereira-Almao P, Energy Fuels, 24(4), 2383 (2010)
- Bahadori A, Mahmoudi M, Nouri A, Oil Gas Facil., 4(01), 66 (2014)
- Elsharkawy AM, Alikhan AA, Fuel, 78(8), 891 (1999)
- Hossain MS, et al., SPE International Thermal Operations and Heavy Oil Symposium, (2005) Society of Petroleum Engineers.
- Adamson AW, Gast AP, Physical Chemistry of Surfaces, Vol. 150, Interscience Publishers, New York, 1967.
- Hwang SC, Tsonopoulos C, Cunningham JR, Wilson GM, Ind. Eng. Chem. Process Des. Dev., 21(1), 127 (1982)
- Millette JP, Scott DS, Reilly IG, Majerski P, Piskorz J, Radlein D, deBruijn TJW, Can. J. Chem. Eng., 80(1), 126 (2002)
- Drelich J, Bukka K, Miller JD, Hanson FV, Energy Fuels, 8(3), 700 (1994)
- Yin JZ, Tan CS, Fluid Phase Equilib., 242(2), 111 (2006)
- Brunner E, J. Chem. Eng. Data, 30(3), 269 (1985)
- Saajanlehto M, Uusi-Kyyny P, Alopaeus V, Fuel, 137, 393 (2014)
- Castaneda LC, Munoz JAD, Ancheyta J, Fuel, 90(12), 3593 (2011)