Korean Journal of Chemical Engineering, Vol.38, No.6, 1129-1138, June, 2021
Dehydrogenation of ethane and subsequent activation of CO2 on hierarchicallystructured bimetallic FeM@ZSM-5 (M=Ce, Ga, and Sn)
E-mail:
The catalytic activity for dehydrogenation of C2H6 and successive CO2 activation was studied by using hierarchically- structured bimetallic FeM/ZSM-5 (M=Ce, Ga, and Sn metal) to verify the redox property of the Fe nanoparticles and metal promoters on the acidic ZSM-5. Based on the surface characteristics, the reducibility and oxygen vacant sites of metal oxides on the ZSM-5 largely altered the reduction-oxidation nature and catalytic cracking behavior. The metal-promoted Fe/ZSM-5, especially with CeO2 promoter on the FeCe/ZSM-5, revealed excellent redox cycles and higher steady-state dehydrogenation activity such as a comparable C2H6 conversion of 6.1% as well as C2H4 selectivity of 89.8% at 600 °C with a larger CO production with 9.7mmol/g by CO2 activation at 700 °C. This observation was attributed to the incorporated partially reducible CeO2 species by enhancing their interaction with ZSM-5 as well as by easily stabilizing the oxidation states of Ce and Fe metal oxides with its higher thermal stability during C2H6 dehydrogenation through an initial oxidative dehydrogenation followed by a steady-state catalytic cracking and subsequent CO2 activation to CO.
Keywords:Dehydrogenation of C2H6;CO2 Activation;Redox Cycles of Fe Nanoparticles;ZSM-5;Chemical Looping (CL) Application
- (a) Dixit M, et al., ACS Catal., 8, 11570 (2018); (b) He Y, et al., ACS Catal., 9, 10464 (2019); (c) Gao Y, et al., ACS Catal., 9, 8592 (2019).
- (a) Yusuf S, et al., Appl. Catal. B., 257, 117885 (2019); (b) Li X, et al., Catal. Today, 276, 62 (2016).
- (a) He C, You F, Ind. Eng. Chem. Res., 53, 11442 (2014); (b) Yang M, et al., Ind. Eng. Chem. Res., 57, 5980 (2018); (c) Zhao ZJ, et al., Angew. Chem. Int. Ed., 57, 6791 (2018).
- (a) Solowey DP, et al., Nat. Chem., 9, 1126 (2017); (b) Li H, et al., ACS Catal., 6, 4536 (2016).
- Yusuf S, Neal L, Bao Z, Wu Z, Li F, ACS Catal., 9, 3174 (2019)
- Haribal VP, Neal LM, Li FX, Energy, 119, 1024 (2017)
- Lee DY, Ryu HJ, Shun DW, Bae DH, Baek JI, Korean J. Chem. Eng., 35(6), 1257 (2018)
- Yun YS, Lee M, Sung J, Yun D, Kim TY, Park H, Lee KR, Song CK, Kim Y, Lee J, Seo YJ, Song IK, Yi J, Appl. Catal. B: Environ., 237, 554 (2018)
- Skoufa Z, Heracleous E, Lemonidou AA, J. Catal., 322, 118 (2015)
- (a)Porosoff MD, et al., Angew. Chem. Int. Ed., 54, 15501 (2015); (b) Gomez E, et al., J. Am. Chem, Soc., 141, 17771 (2019).
- (a) Yao S, et al., ACS Catal., 8, 5374 (2018); (b) Gomez E, et al., AIChE J., 65, e16670 (2019).
- (a) Neal LM, et al., Science, 19, 894 (2019); (b) Neal LM, et al., Energy Technol., 4, 1200 (2016).
- Wang LC, Zhang Y, Xu J, Diao W, Karakalos S, Liu B, Song X, Wu W, He T, Ding D, Appl. Catal. B: Environ., 256, 117816 (2019)
- (a) Schreiber MW, et al., J. Am. Chem, Soc., 140, 4849 (2018); (b) Samanta A, et al., Ind. Eng. Chem. Res., 56, 11006 (2017); (c) Choi SW, et al., J. Catal., 345, 113 (2017).
- Pidko EA, Kazansky VB, Hensen EJM, van Santen RA, J. Catal., 240(1), 73 (2006)
- Yun JH, Lobo RF, J. Catal., 312, 263 (2014)
- Zhang Y, Zhou Y, Qiu A, Wang Y, Xu Y, Wu P, Catal. Commun., 7(11), 860 (2006)
- Huang H, Zhu H, Zhang Q, Li C, Korean J. Chem. Eng., 36(2), 210 (2019)
- Chen X, Qiao M, Xie S, Fan K, Zhou W, He H, J. Am. Chem. Soc., 129(43), 13305 (2007)
- Saeidi M, Hamidzadeh M, Res. Chem. Intermed., 43, 2143 (2017)
- Feng R, Yan X, Hu X, Zhang Y, Wu J, Yan Z, Appl. Catal. A: Gen., 594, 117464 (2020)
- Mohamed RM, Aly HM, El-Shahat MF, Ibrahim IA, Microporous Mesoporous Mater., 79, 7 (2005)
- van de Water LGA, van der Waal JC, Jansen JC, Cadoni M, Marchese L, Maschmeyer T, J. Phys. Chem. B, 107(38), 10423 (2003)
- Cui X, Zhu Y, Hua Z, Feng J, Liu Z, Chen L, Shi J, Energy Environ. Sci., 8, 1261 (2015)
- (a) Zhang Y, et al., RSC Adv., 6, 29410 (2016); (b) Kasipandi S, Bae JW, Adv. Mater., 31, 1803390 (2019).
- Sarshar Z, Sun ZK, Zhao DY, Kaliaguine S, Energy Fuels, 26(5), 3091 (2012)
- Zhu JJ, Zhao Z, Xiao DH, Li J, Yang XG, Wu Y, J. Mol. Catal. A-Chem., 238(1-2), 35 (2005)
- Jeong MH, Sun J, Han GY, Lee DH, Bae JW, Appl. Catal. B: Environ., 270, 118887 (2020)
- Jeong MH, Lee DH, Han GY, Shin CH, Shin MK, Ko CK, Bae JW, Fuel, 202, 547 (2017)
- Yuan E, Wu G, Dai W, Guan N, Li L, Catal. Sci. Technol., 7, 3036 (2017)
- Lai Y, Veser G, Catal. Sci. Technol., 6, 5440 (2016)
- (a) Feng T, Vohs JM, J. Catal., 221, 619 (2004); (b) Li CL, Lin YC, Appl. Catal. B., 107, 284 (2011).
- Wang C, Shi HS, Li Y, Appl. Surf. Sci., 257(15), 6873 (2011)
- Freire L, Novoa XR, Montemor MF, Carmezim MJ, Mater. Chem. Phys., 114(2-3), 962 (2009)
- Kuntaiah K, Sudarsanam P, Reddy BM, Vinu A, RSC Adv., 3, 7953 (2013)
- Hassan IA, Sathasivam S, Islam HU, Nair SP, Carmalt CJ, RSC Adv.,, 7, 551 (2017)
- Chen DK, He DD, Lu JC, Zhong LP, Liu F, Liu JP, Yu J, Wan GP, He SF, Luo YM, Appl. Catal. B: Environ., 218, 249 (2017)
- Lei TQ, Miao CX, Hua WM, Yue YH, Gao Z, Catal. Lett., 148(6), 1634 (2018)