화학공학소재연구정보센터
Polymer(Korea), Vol.45, No.3, 443-449, May, 2021
산화제의 화학구조가 폴리피롤 박막의 광-전기적 특성에 미치는 영향
Effect of the Chemical Structure of the Oxidants on the Opto-electronic Properties of Polypyrrole Thin Film
E-mail:,
초록
본 연구에서 알킬기의 길이가 다른 세가지 종류의 iron(III)-alkylbenzensulfonate계 산화제를 합성하였다. 제조된 산화제들을 이용하여 폴리피롤(PPy)을 기상중합법(vapor phase polymerization; VPP)으로 제조하여 산화제의 화학구조가 PPy 박막의 형태학 및 광-전기적 특성에 어떤 영향을 끼치는지 알아보고자 하였다. 산화제의 벤젠 고리의 파라위치에 있는 알킬기 사슬 길이가 짧아질수록 박막의 투과도는 감소하였다. 이는 산화제 알킬기 길이가 짧아질수록 도판트로써 입체장애가 상대적으로 작아져 두꺼운 PPy 박막을 형성하여 투과도가 감소한다고 생각된다. 산화제의 알킬기 사슬 길이가 짧아질수록 박막의 전기전도도는 증가하였다. 알킬기가 없는 산화제(oxidant-A0)는 전자공여효과가 가장 작아 생성되는 PPy 입자 크기의 감소에 따른 박막의 전도 계면이 넓어졌기 때문이라 생각된다.
In this study, three types of iron(III)-alkylbenzensulfonate-based oxidizing agents with different alkyl groups lengths were synthesized. Using the prepared oxidizing agents, polypyrrole (PPy) was synthesized by vapor phase polymerization (VPP) to investigate how the chemical structure of the oxidizing agent affects the morphology and opto-electric properties of the prepared PPy thin film. As the chain length of the alkyl group on the para position in the benzene ring of the oxidant was shortened, the transmittance of the PPy thin film decreased. It is postulated that the shorter the length of alkyl group in the oxidant, the smaller the steric hindrance to the dopant becomes, forming a thick PPy thin film, thereby reducing the transmittance of the thin film. The electrical conductivity of the thin film increased as the chain length of the alkyl group in the oxidant decreased. It might be due to the fact that the oxidizing agent without an alkyl group (oxidant-A0) has the smallest electron donating effect resulting in the decrease in the size of the produced PPy particles. The interfacial conductive area would be increased in the PPy thin film formed by the interconnection of small PPy particles.
  1. Chiang CK, Fincher CR, Park YK, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiarmid AG, Phys. Rev. Lett., 39, 1098 (1977)
  2. Atesa M, Karazehira T, Saracb AS, Curr. Phys. Chem., 2, 224 (2012)
  3. He H, Zhang L, Guan X, Cheng H, Liu X, Yu S, Wei J, Ouyang J, ACS Appl. Mater. Inter., 11, 26185 (2019)
  4. Nguyen DN, Yoon H, Polymers, 8, 118 (2016)
  5. Kaur G, Adhikari R, Cass P, Bown ME, Evans MDM, Vashi AV, Gunatillake P, RSC Adv., 5, 98762 (2015)
  6. Losaria PM, Yim JH, J. Ind. Eng. Chem., 74, 108 (2019)
  7. Losaria PM, Yim JH, Macromol. Chem. Phys., 221, 200015 (2020)
  8. Janata J, Josowicz M, Nature Mat., 2, 19 (2003)
  9. Waghuley SA, Yenorkar SM, Yawale SS, Yawale SP, Sens. Actuators B-Chem., 128, 366 (2008)
  10. Fernandez FDM, Khadka R, Yim JH, RSC Adv., 10, 22533 (2020)
  11. Guerchouche K, Herth E, Calvet LE, Roland N, Loyez C, Microelectron. Eng., 182, 46 (2017)
  12. Zhang W, Zhao B, He Z, Zhao X, Wang H, Yang S, Wu H, Cao Y, Energy Environ. Sci., 6, 1956 (2013)
  13. Groenendaal L, Zotti G, Jonas F, Synth. Met., 118, 105 (2001)
  14. Cho SI, Xiao R, Lee SB, Nanotechnology, 18, 405705 (2007)
  15. Pettersson LAA, Carlsson F, Inganas O, Arwin W, Thin Solid Films, 313, 356 (1998)
  16. Kim JY, Kim ER, Won YS, Lee HS, Suh KS, Synth. Met., 139, 485 (2003)
  17. Mohammadi A, Hasan MA, Liedberg B, Lundstorm I, Salaneck WR, Synth. Met., 14, 189 (1986)
  18. Choi JS, Cho KY, Yim JH, Eur. Polym. J., 46, 389 (2010)
  19. Jang KS, Eom YS, Lee TW, Kim DO, Oh YS, Jung HC, Nam JD, Appl. Mater. Inter., 1, 1567 (2009)
  20. Ko YS, Yim JH, Polymer, 93, 167 (2016)
  21. Cheng N, Zhang L, Kim JJ, Andrew TL, J. Mater. Chem. C, 5, 5787 (2017)
  22. Winther-Jensen B, West K, Macromolecules, 37(12), 4538 (2004)
  23. Ueno T, Arntz HD, Flesch S, Bargon J, J. Macromol. Sci. Chem., 25, 1557 (1988)
  24. de Leeuw DM, Kraakman PA, Bongaerts PFG, Mutsaers CMJ, Klaassen BBM, Synth. Met., 66, 263 (1994)
  25. Winther-Jensen B, Chen J, West K, Wallace G, Macromolecules, 37(16), 5930 (2004)
  26. Winther-Jensen B, Breiby DW, West K, Synth. Met., 152, 1 (2005)
  27. Subramanian P, Clark N, Winther-Jensen B, MacFarlane D, Spiccia L, Aust. J. Chem., 62, 133 (2009)
  28. Brooke R, Cottis P, Talemi P, Fabretto M, Murphy P, Evans D, Prog. Mater. Sci., 86, 127 (2017)
  29. Chen J, Winther-Jensen B, Pornputtkul Y, West K, Kane-Maquire L, Wallace GG, Electrochem. Solid-State Lett., 9, C9 (2006)
  30. Ko YS, Yim JH, Polymer, 93, 167 (2016)
  31. Han YH, Travas-Sejdic J, Wright B, Yim JH, Macromol. Chem. Phys., 212, 521 (2011)
  32. Yang HJ, Kim JH, Lee SS, Cho GS, Fashion Text. Res. J., 22, 386 (2020)
  33. Shanthala VS, Devi SNS, Murugendrappa MV, Int. J. Sci. Res. Publ., 6, 21 (2016)
  34. Ko YS, Yim JH, Polymer, 93, 167 (2016)
  35. Ha YH, Nikolov N, Pollack SK, Mastrangelo J, Martin BD, Shashidhar R, Adv. Funct. Mater., 14, 6 (2004)
  36. Choi JS, Cho KY, Yim JH, Eur. Polym. J., 46, 389 (2010)
  37. Subramanian P, Clark NB, Spiccia L, MacFarlane DR, Winther-Jensen B, Forsyth C, Synth. Met., 158, 704 (2008)