- Previous Article
- Next Article
- Table of Contents
Reviews in Chemical Engineering, Vol.37, No.2, 305-338, 2021
Magnetized fluidized bed with binary admixture of magnetizable and nonmagnetizable particles
Magnetic fields were used to successfully improve the fluidization quality of magnetizable particles, forming the magnetized fluidized bed (MFB). Moreover, researchers found that the binary admixture of magnetizable and nonmagnetizable particles could also be used in the MFB, creating the admixture MFB. Consequently, the MFB technique is no longer restricted to the few magnetizable particles in nature and can be extended to numerous nonmagnetizable particles. Nevertheless, research on the admixture of MFB is far from sufficient, severely hindering its commercial application in the chemical and biochemical industries. To deepen our understanding in this area, this review summarizes the relevant findings, which mainly include (1) transport phenomena in the gas-solid admixture MFB with Geldart B particles; (2) elimination of the abnormal fluidization phenomena in the gas-solid admixture MFB with Geldart C particles; (3) flow regime transition of the liquid-solid admixture MFB under both the magnetization-FIRST and magnetization-LAST operation modes; and (4) application of the pure MFB in the fields of gas filtration and coal dry separation. Finally, critical comments are made on the shortcomings of the reported research with the hope that more efforts could be devoted to these aspects in the future.
Keywords:flow regime transition;heat and mass transfer;hydrodynamic;magnetized fluidized bed;mixture