화학공학소재연구정보센터
Renewable Energy, Vol.161, 1328-1340, 2020
Ecological-economic assessment of renewable energy deployment in sustainable built environment
Modern technological advances and rapid cost reduction have led to the widespread deployment of solar photovoltaic (PV) units, which is a cost-effective solution to improve the energy resilience and carbon offsetting for a sustainable built environment. However, PV electricity is not a pure clean energy considering the costs and carbon emissions associated with its manufacturing and operations. Moreover, the efficiency of a PV system is significantly affected by the local climate and built environment as well as energy management and storage methods. Therefore, it is essential to assess PV systems using integrated metrics for a comprehensive understanding of their net benefits. Hence, this study developed and applied life-cycle models to support PV system assessment in local contexts by identifying the morphological factors that affect PV system efficiency, by estimating energy, carbon and investment payback periods; and discussing the carbon offsetting in different energy storage contexts. Case study indicates that using PV-battery systems is an economical way to improve energy resilience and carbon offsetting. Further, communal storage is more favourable than household-level storage. Methodology and findings of this study are expected to facilitate the development of economical low-carbon energy supply as well as to support the optimal planning of low-carbon precincts. (C) 2020 Elsevier Ltd. All rights reserved.