Polymer Engineering and Science, Vol.60, No.11, 2864-2875, 2020
Electrical conductivity of poly(vinyl alcohol)/carbon nanotube multilayer thin films: Influence of sodium polystyrene sulfonate mediated carbon nanotube dispersion
This investigation was aimed to enhance the dispersibility of multi-walled carbon nanotubes (MWCNT) using sodium polystyrene sulfonate (Na-PSS) polyelectrolyte. Subsequently, electrically conducting, multi-layer thin films are prepared utilizing layer by layer assembly method with poly(vinyl alcohol) as a host matrix. The highest extent of MWCNT dispersion was observed in MWCNT:Na-PSS ratio of 1:9 (wt/wt), which was estimated from UV-Vis spectroscopic analysis. Zeta potential measurements of Na-PSS modified MWCNT dispersion showed large negative potentials ranging from -52 to -64 mV in the most stable pH range of 4 to 10, suggesting the colloidal stability is due to the long-range repulsive nature of electrostatic interactions from negatively charged sulfonate groups. Complementary molecular dynamics simulations showed that adsorption of Na-PSS imparts a large negative potential to the carbon nanotube surface, which increases with an increase in Na-PSS concentration. The multi-layer thin film of (1:9) MWCNT:Na-PSS exhibited a DC electrical conductivity of 2.96 x 10(2) S/m.
Keywords:conducting thin films;layer by layer assembly;multi-walled carbon nanotubes;poly(sodium 4-styrene sulfonate);zeta potential measurement