화학공학소재연구정보센터
Plasma Chemistry and Plasma Processing, Vol.41, No.1, 85-108, 2021
Three-Dimensional Two-Temperature Modeling of Ar Loop-Type Inductively Coupled Thermal Plasma for Surface Modification
In this paper, numerical calculations were made for Ar loop-type inductively coupled thermal plasma (loop-ICTP). The loop-ICTP was developed originally by the authors' group for rapid surface modification of large areas. Loop-ICTP is sustained with a unique three-dimensional (3D) configuration inside a circular loop quartz tube and on the substrate. A 3D and two-temperature thermofluid thermal plasma model was adopted for this calculation. Mass, momentum, and energy conservation equations were solved using a Maxwell equation for vector potential, an electron energy transport equation, and Saha's equation in the 3D space. Results indicate that Ar loop-ICTP can be sustained and formed in the loop tube and also on the substrate. Moreover, the heavy particle temperatures reaches 1800-2000 K, whereas the electron temperature is about 10,000 K. Loop size effects on the gas temperature and gas flow field were also investigated using the developed model. Results show that adoption of a larger loop tube can be expected to improve the plasma uniformity on the substrate when applied to rapid surface modification.