Nature, Vol.589, No.7840, 116-U208, 2021
A network of transcriptional repressors modulates auxin responses
The regulation of signalling capacity, combined with the spatiotemporal distribution of developmental signals themselves, is pivotal in setting developmental responses in both plants and animals(1). The hormone auxin is a key signal for plant growth and development that acts through the AUXIN RESPONSE FACTOR (ARF) transcription factors(2-4). A subset of these, the conserved class A ARFs(5), are transcriptional activators of auxin-responsive target genes that are essential for regulating auxin signalling throughout the plant lifecycle(2,3). Although class A ARFs have tissue-specific expression patterns, how their expression is regulated is unknown. Here we show, by investigating chromatin modifications and accessibility, that loci encoding these proteins are constitutively open for transcription. Through yeast one-hybrid screening, we identify the transcriptional regulators of the genes encoding class A ARFs from Arabidopsis thaliana and demonstrate that each gene is controlled by specific sets of transcriptional regulators. Transient transformation assays and expression analyses in mutants reveal that, in planta, the majority of these regulators repress the transcription of genes encoding class A ARFs. These observations support a scenario in which the default configuration of open chromatin enables a network of transcriptional repressors to regulate expression levels of class A ARF proteins and modulate auxin signalling output throughout development. Genes encoding the class A auxin-response factor group of plant transcriptional activators reside in constitutively open chromatin, enabling their continual regulation by transcriptional repressors to modulate auxin signalling throughout development.