화학공학소재연구정보센터
Langmuir, Vol.36, No.45, 13457-13468, 2020
Ion-Specific Adsorption on Bare Gold (Au) Nanoparticles in Aqueous Solutions: Double-Layer Structure and Surface Potentials
We study the solvation and electrostatic properties of bare gold (Au) nanoparticles (NPs) of 1-2 nm in size in aqueous electrolyte solutions of sodium salts of various anions with large physicochemical diversity (Cl-, BF4-, PF6-, Nip(-) (nitrophenolate), 3- and 4-valent hexacyanoferrate (HCF)) using nonpolarizable, classical molecular dynamics computer simulations. We find a substantial facet selectivity in the adsorption structure and spatial distribution of the ions at the AuNPs: while sodium and some of the anions (e.g., Cl-, HCF3(-)) adsorb more at the "edgy" (100) and (110) facets of the NPs, where the water hydration structure is more disordered, other ions (e.g., BF4-, PF6-, Nip(-)) prefer to adsorb strongly on the extended and rather flat (111) facets. In particular, Nip(-), which features an aromatic ring in its chemical structure, adsorbs strongly and perturbs the first water monolayer structure on the NP (111) facets substantially. Moreover, we calculate adsorptions, radially resolved electrostatic potentials as well as the far-field effective electrostatic surface charges and potentials by mapping the long-range decay of the calculated electrostatic potential distribution onto the standard Debye-Huckel form. We show how the extrapolation of these values to other ionic strengths can be performed by an analytical Adsorption-Grahame relation between the effective surface charge and potential. We find for all salts negative effective surface potentials in the range from -10 mV for NaCl down to about -80 mV for NaNip, consistent with typical experimental ranges for the zeta potential. We discuss how these values depend on the surface definition and compare them to the explicitly calculated electrostatic potentials near the NP surface, which are highly oscillatory in the +/- 0.5 V range.