화학공학소재연구정보센터
Langmuir, Vol.37, No.10, 3025-3037, 2021
Depletion of the Lubricant from Lubricant-Infused Surfaces due to an Air/Water Interface
Lubricant-infused surfaces (LIS) have emerged as an innovative way to combat several modern challenges such as biofouling, ice formation, and surface drag. The favorable properties of LIS are dependent on the presence and distribution of a lubricant layer coating the underlying substrate. Unfortunately, this layer is not indefinitely stable and depletes due to external forces. Here, we study how an air/water interface depletes the lubricant from LIS as a function of lubricant wettability on the substrate by varying the chemistry of both the lubricant and the substrate. The lubricants were chosen to represent some of those most commonly used in the literature (silicone oil, perfluoropolyethers, and mineral oil). We use an optical Wilhelmy plate tensiometer to measure the contact angle of the air/water interface on the LIS in situ as the sample is driven through the air/water interface and contact angle hysteresis as a qualitative measure of lubricant depletion. This data is augmented with ex situ quantitative mapping of lubricant thickness using atomic force microscopy (AFM) meniscus force measurements. We find that a thick layer of excess lubricant is always removed in just one dip, regardless of wettability, and that lubricants that do not spread fully on the substrate deplete faster due to their dewetting into droplets. We also find that lubricants that spread onto the air/water interface are more susceptible to depletion. Finally, we investigate the effect of repeated immersions on the properties of liquidlike poly(dimethylsiloxane) (PDMS) chains tethered to glass and find that dynamic contact angles on these surfaces remain constant over several dips and therefore their low hysteresis is unlikely due to unbound polymer.