Langmuir, Vol.37, No.11, 3309-3320, 2021
Surfactant Driven Marangoni Spreading in the Presence of Predeposited Insoluble Surfactant Monolayers
When an insoluble surfactant is deposited on the surface of a thin fluid film, stresses induced by surface tension gradients drive Marangoni spreading across the subphase surface. The presence of a predeposited layer of an insoluble surfactant alters that spreading. In this study, the fluid film was aqueous, the predeposited insoluble surfactant was dipalmitoylphosphatidylcholine (DPPC), and the deposited insoluble surfactant was oleic acid. An optical density-based method was used to measure subphase surface distortion, called the Marangoni ridge, associated with propagation of the spreading front. The movement of the Marangoni ridge was correlated with movement of surface tracer particles that indicated both the boundary between the two surfactant layers and the surface fluid velocities. As the deposited oleic acid monolayer spread, it compressed the predeposited DPPC monolayer. During spreading, the surface tension gradient extended into the predeposited monolayer, which was compressed nonuniformly, from the deposited monolayer. The spreading was so rapid that the compressed predeposited surfactant could not have been in quasi-equilibrium states during the spreading. As the initial concentrations of the predeposited surfactant were increased, the shape of the Marangoni ridge deformed. When the initial concentration of the predeposited surfactant reached about 70 A(2)/molecule, there was no longer a Marangoni ridge but rather a broadly distributed excess of fluid above the initial fluid height. The nonuniform compression of the annulus of the predeposited monolayer also caused tangential motion ahead of both the Marangoni ridge and the boundary between the two monolayers. Spreading ceased when the two monolayers reached the same final surface tension. The final area per molecule of the DPPC monolayer matched that expected from the equilibrium DPPC isotherm at the same final surface tension. Thus, at the end of spreading, there was a simple surface tension balance between the two distinct monolayers.