- Previous Article
- Next Article
- Table of Contents
Macromolecular Research, Vol.29, No.4, 321-326, April, 2021
Synthesis, CO2 Adsorption and Catalytic Properties of Porphyrin-Pyromellitic Dianhydride Based Porous Polymers
E-mail:
The synthesis, characterization and CO2 uptake tendency of a new porous organic polymer (POP) based on porphyrin-pyromellitic dianhyderide is enclosed. The reported porphyrin POP was achieved by exploiting the condensation reaction between tetraaminophenylporphyrin (TAPP) with benzenetetracarboxylic (pyromellitic) diahhydride in dry dimethylforamide (DMF). The structure of the resulting polymer was confirmed by FT-IR as well as solid state 13C cross-polarization magic angle spinning (CP/MAS) NMR studies. In addition, the post-synthetic metallation of the free-base porphyrin macrocycles of the resulting POP with either Zn or Mn metals afforded the metallo-porphyrin POP analogues in excellent yields. The morphology of the reported porphyrin POPs were investigated by scanning electron microscopy (SEM) which demonstrated the porosity of the resulting POPs. Furthermore, CO2 adsorption capabilities of the synthesized POPs were evaluated and Brunauer-Emmett Teller (BET) surface area was found to be 542, 597 and 828 m2/g for free-base, Zn- and MnIII-POP, respectively. Finally, MnIII-POP was found to be an effective catalyst for the selective epoxidation of styrene to the corresponding epoxide.
- Zhang T, Xing G, Chen W, Chen L, Mater. Chem. Front., 4, 332 (2020)
- Wang Z, Zhang S, Chen Y, Zhang Z, Ma S, Chem. Soc. Rev., 49, 708 (2020)
- Lv SW, Liu JM, Wang ZH, Ma H, Li CY, Zhao N, Wang S, J. Environ. Sci., 80, 169 (2019)
- Gao H, Li Q, Ren S, Curr. Opin. Green Sustain. Chem., 16, 33 (2019)
- Bhanja P, Modak A, Bhaumik A, ChemCatChem, 11, 244 (2019)
- Bildirir H, Gregoriou VG, Avgeropoulos A, Scherf U, Cho-chos CL, Materials Horizons, 4, 546 (2017)
- Das S, Heasman P, Ben T, Qiu SL, Chem. Rev., 117(3), 1515 (2017)
- Bera R, Ansari M, Alam A, Das N, ACS Appl. Polym. Mater, 1, 959 (2019)
- Xiong S, Tang X, Pan C, Li L, Tang J, Yu G, ACS Appl. Mater. Interfaces, 11, 27335 (2019)
- Peng RX, Chen G, Zhou F, Man RL, Huang JH, Chem. Eng. J., 371, 260 (2019)
- Chen D, Liu C, Tang J, Luo L, Yu G, Polym. Chem., 10, 1168 (2019)
- Shao L, Liu M, Snag Y, Huang J, Microporous Mesoporous Mater., 285, 105 (2019)
- Chakraborty D, Nandi S, Sinnwell MA, Liu J, Kushwaha R, Thallapally PK, Vaidhyanathan R, ACS Appl. Mater. Interfaces, 11, 13279 (2019)
- Liu ZW, Cao CX, Han BH, J. Hazard. Mater., 367, 348 (2019)
- Comotti A, Castiglioni F, Bracco S, Perego J, Pedrini A, Negroni M, Sozzani P, Chem. Commun., 55, 8999 (2019)
- Liu X, Xu C, Yang X, He Y, Guo Z, Yan D, Microporous Mesoporous Mater., 275, 95 (2019)
- James SL, Chem. Soc. Rev., 32, 276 (2003)
- Li S, Huo F, Nanoscale, 7, 7482 (2015)
- Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM, Science, 341, 123044 (2013)
- Xuan W, Zhu C, Liu Y, Cui Y, Chem. Soc. Rev., 41, 1677 (2012)
- Shen R, Zhu W, Yan X, Li T, Liu Y, Li Y, Dai S, Gu ZG, Chem. Commun., 55, 822 (2019)
- Li ZP, Zhi YF, Shao PP, Xia H, Li GS, Feng X, Chen X, Shi Z, Liu XM, Appl. Catal. B: Environ., 245, 334 (2019)
- Gao W, Tian J, Fang Y, Liu T, Zhang X, Xu X, Zhang X, Chemosphere, 243, 125334 (2020)
- Li DK, Fang YS, Zhang XM, ACS Appl. Mater. Interfaces, 12, 8989 (2020)
- Li MT, Zhao HY, Lu ZY, Microporous Mesoporous Mater., 292, 109774 (2020)
- Li Y, Fang Y, Gao W, Guo X, Zhang X, ACS Sustain. Chem. Eng., 8, 10870 (2020)
- Liu T, Jing L, Cui L, Liu Q, Zhang X, Chemosphere, 212, 1038 (2018)
- Mukherjee G, Thote J, Aiyappa HB, Kandambeth S, Banerjee S, Vanka K, Banerjee R, Chem. Commun., 53, 4461 (2017)
- Zhu W, Ding ZD, Wang X, Li T, Shen R, Li Y, Li Z, Ren X, Gu ZG, Polym. Chem., 8, 4327 (2017)
- Jiang X, Liu Y, Liu J, Luo Y, Lyu Y, RSC Adv., 5, 98508 (2015)
- Hao W, Chen D, Li Y, Yang Z, Xing G, Li J, Chen L, Chem. Mater., 31, 8100 (2019)
- Guo JF, Wang LZ, Huang JH, Ind. Eng. Chem. Res., 59(7), 3205 (2020)
- Guo JF, Wang LZ, Zhang D, Huang JH, Energy Fuels, 34(8), 9771 (2020)
- Shi KX, Song NN, Zou YC, Zhu SY, Tan HW, Tian Y, Zhang B, Yao HY, Guan SW, Polymer, 169, 160 (2019)
- Park KC, Cho J, Lee CY, RSC Adv., 6, 75478 (2016)
- Tian J, Zhang W, Prog. Polym. Sci, 95, 65 (2019)
- Wang H, Ding H, Meng X, Wang C, Chinese Chem. Lett., 27, 1376 (2016)
- Rehman A, Park SJ, Macromol. Res., 25(10), 1035 (2017)
- Lu Y, Chang ZS, Zhang SZ, Wang SL, Chen Q, Feng LJ, Sui ZY, J. Mater. Sci., 55(26), 11856 (2020)
- Wang W, Li C, Jin J, Yan L, Ding Y, Dalton Trans., 47, 13135 (2018)
- Lu G, Zhu Y, Xu K, Jin Y, Ren ZJ, Liu Z, Zhang W, Nanoscale, 7, 18271 (2015)
- Oveisi AR, Zhang K, Khorramabadi-zad A, Farha OK, Hupp JT, Sci. Rep., 5, 10621 (2015)
- Zhang K, Farha OK, Hupp JT, Nguyen ST, ACS Catal., 5, 4859 (2015)
- Selahle SK, Waleng NJ, Mpupa A, Nomngongo PN, Front. Chem., 8, 555847 (2020)
- Tang JK, Zhu CY, Jiang TW, Wei L, Wang H, Yu K, Yang CL, et al., J. Mater. Chem. A, 8, 18677 (2020)
- Wang J, Jiao C, Li M, Wang X, Wang C, Wu Q, Wang Z, Microchim. Acta, 185, 36 (2018)
- Pan L, Chen Z, Deng W, Yan G, Liu X, Macromol. Res., 24(4), 366 (2016)
- Zhu J, Tan Z, Yang W, Macromol. Res., 25(8), 792 (2017)
- Shultz AM, Farha OK, Hupp JT, Nguyen ST, Chem. Sci., 2, 686 (2011)
- Bettelheim A, White BA, Raybuck SA, Murray RW, Inorg. Chem., 26, 1009 (1987)
- Jin J, New J. Chem., 44, 15362 (2020)