화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.124, No.42, 9289-9296, 2020
Do We Understand the Mechanisms Used by Biological Systems to Correct Their Errors?
Most cellular processes involved in biological information processing display a surprisingly low error rate despite the stochasticity of the underlying biochemical reactions and the presence of competing chemical species. Such high fidelity is the result of nonequilibrium kinetic proofreading mechanisms, i.e., the existence of dissipative pathways for correcting the reactions that went in the wrong direction. While proofreading was often studied from the perspective of error minimization, a number of recent studies have demonstrated that the underlying mechanisms need to consider the interplay of other characteristic properties such as speed, energy dissipation, and noise reduction. Here, we present current views and new insights on the mechanisms of error-correction phenomena and various trade-off scenarios in the optimization of the functionality of biological systems. Existing challenges and future directions are also discussed.