Journal of Physical Chemistry A, Vol.124, No.45, 9392-9399, 2020
Bridge Resonance Effects in Singlet Fission
A major benefit of intramolecular singlet fission (iSF) materials, in which through-bond interactions mediate triplet pair formation, is the ability to control the triplet formation dynamics through molecular engineering. One common design strategy is the use of molecular bridges to mediate interchromophore interactions, decreasing electronic coupling by increasing chromophore-chromophore separation. Here, we report how the judicious choice of aromatic bridges can enhance chromophore-chromophore electronic coupling. This molecular engineering strategy takes advantage of "bridge resonance", in which the frontier orbital energies are nearly degenerate with those of the covalently linked singlet fission chromophores, resulting in fast iSF even at large interchromophore separations. Using transient absorption spectroscopy, we investigate this bridge resonance effect in a series of pentacene and tetracene-bridged dimers, and we find that the rate of triplet formation is enhanced as the bridge orbitals approach resonance. This work highlights the important role of molecular connectivity in controlling the rate of iSF through chemical bonds and establishes critical design principles for future use of iSF materials in optoelectronic devices.