화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.125, No.3, 801-815, 2021
1,3-Dipolar Cycloadditions by a Unified Perspective Based on Conceptual and Thermodynamics Models of Chemical Reactivity
The main aim in the present report is to gain a deeper understanding of typical 1,3-dipolar cydoadditions by means of three chemical reactivity models in a unified perspective: conceptual density functional theory, distortion/interaction, and reaction force analysis. The focus is to explore the information provided by each reactivity model and how they complement or reinforce each other. Our results showed that the Bell-Evans-Polanyi (BEP) relationship is fulfilled, which is consistent with the Hammond-Leffler postulate. The electronic chemical potential based analysis classifies the reactions as HOMO-, HOMO/LUMO-, and LUMO-controlled reactions as the activation energy increases. It seems likely that HOMO-controlled reaction shifts into LUMO-controlled one as the transition state (TS) position does from early into late. Therefore, the transition from HOMO- (and early TS) into LUMO-controlled (and late TS) is paid by shifting the overall energy change into an endothermic direction, thus supporting the fulfillment of the BEP principle. While thermodynamic models unveil that the distortion or structural rearrangements mainly drive the activation barriers rather than interaction or electronic rearrangements in accord with the distortion/interaction and reaction force analysis, respectively. It is also found that both models are consistent when energy associated with structural and electronic reordering from reaction force analysis is respectively confronted with destabilizing (distortion and Pauli repulsion) and stabilizing (electrostatic and orbital interactions) contributions from the distortion/interaction model, which, on the other hand, increases as low activation barrier and high exothermicity are converted into the high barrier and low exothermicity along with the BEP relation. Finally, the reaction force constant reveals that all 1,3-dipolar cycloaddition reactions proceed by a synchronous single-step mechanism, unveiling that the degree of synchronicity is quite the same in all reactions, confirming the statement that BEP is fulfilled for similar reactions proceeding by a quite alike degree of synchronicity.