화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.578, 304-314, 2020
Bio-inspired porous helical carbon fibers with ultrahigh specific surface area for super-efficient removal of sulfamethoxazole from water
Helical carbon fibers (HCFs) are a new kind of fascinating carbon material, and have caused much attention for their distinctive features, diversified novel properties, and applications. However, the application of HCFs still faces a series of barriers, especially in the repetitive preparation of HCFs. In this paper, we initially report the synthesis of the HCFs with ultrahigh specific surface area (3089 m(2)g(-1)) by a biotemplate process using the high purified spiral vessels (SVs) as the template. The helical structure with the ultrahigh specific surface area can efficaciously shorten the pathway for antibiotics diffusion, and the high content of nanopores (1 to 3 nm) not only guarantees the accessibility of the surface for antibiotics storage but also easily provides approachable channels for antibiotics transmission. The highest adsorption capacity for sulfamethoxazole (SMX) is 1091 mg/g at pH 6.0 +/- 0.1 with a stable temperature of 20 degrees C when the initial SMX concentration is 80 mg/L. This study motivates a new bio-inspired design for preparing the high purified HCFs with a simple bio-template method. The results show that the porous HCFs are a new kind of ultrahigh adsorption material for the removal of SMX in aqueous solution and can be used in new technological applications. (C) 2020 Elsevier Inc. All rights reserved.