화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.586, 640-646, 2021
Voltage-assisted SILAR deposition of CdSe quantum dots to construct a high performance of ZnS/CdSe/ZnS quantum dot-sensitized solar cells
The charge recombination on the interfaces of TiO2/quantum dots (QDs)/electrolyte is a key factor limiting the efficiency of quantum dot-sensitized solar cells (QDSSCs). Construction of double-layer barrier structure of ZnS/QDs/ZnS is a vital strategy to suppress the interfacial charge recombination. However, a large lattice mismatch (12%) at CdSe/ZnS interfaces causes CdSe to grow slowly on TiO2/ZnS mesoporous film, weakening the interaction between QDs and mesoporous film, which reducing the efficiency of CdSe QDSSCs with double ZnS barrier layers. Applying a voltage of 2 V in successive ionic layer adsorption reaction (VASILAR) to create an electric field, which assists Cd2+ and SeSO32 ions rapidly diffuse into the TiO2/ZnS mesoporous film to react forming CdSe QDs at room temperature. Optimizing the number of CdSe QDs deposition layers and combine with ZnS double-layer barrier structure, a best PCE of 4.34% for ZnS/CdSe/ZnS QDSSCs is achieved. This study gives a fast and simple approach to inhibit interfacial charge recombination to construct high performance CdSe QDSSCs. (C) 2020 Elsevier Inc. All rights reserved.