화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.589, 110-126, 2021
A dual thermoresponsive and antifouling zwitterionic microgel with pH triggered fluorescent "on -off" core
A unique, tailor-made, zwitterionic, dual thermoresponsive and fluorescent microgel probe was synthesized via Reversible Addition Fragmentation chain-Transfer (RAFT) polymerization. Microgels were pre pared via oil in water (o/w) emulsion polymerization where poly(carboxybetaine) (PCB) acted as a macro-RAFT reagent as well as an emulsifier. The presence of poly(N-vinylcaprolactam) (PNVCL) in the microgel system imparts the thermoresponsiveness to the system and the presence of a rhodamine derivative as fluorophore makes it responsive to pH change of the system by showing a fluorescence emission at 580 nm (reddish orange color). The dual thermoresponsiveness [i.e. the presence of upper critical solution temperature (UCST @ 12 degrees C) as well as lower critical solution temperature (LCST @ 33 degrees C)] of the microgels was studied via UV-visible spectroscopy (UV-vis) and temperature responsive dynamic light scattering (DLS) analyses. Presence of the PCB in the corona-crosslinked microgel, played a vital role in the formation of self-assembled structure as well as in protein immobilization (antifouling activity). Antifouling property was studied using UV-vis spectroscopy where bovine serum albumin (BSA) was taken as a model protein. The presence of the pH-responsive fluorescence, thermoresponsiveness as well as antifouling properties makes this zwitterionic microgel system a potential a potential candidate for medical diagnostics and for drug delivery vehicles. (c) 2020 Elsevier Inc. All rights reserved.