화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.590, 458-466, 2021
Orientation-independent reaction activity monitoring with single particle and data analytics
Single-particle analysis is the most powerful method to obtain accurate local information for understanding and monitoring chemical reactions. However, investigations about obtaining comprehensive information at the single-particle level to overcome individual errors and sampling randomness have not been reported to date. Plasmonic nanorods, which have excellent anisotropic optical and chemical properties, make us in situ acquisition of conformation and dynamics of the biological information. On the basis of their anisotropic optical properties of the plasmonic nanorods such as Au nanorods (AuNRs) and data analytics, herein we developed a high-throughput resonance scattering imaging method of AuNRs under dark-field microscopy (DFM) to monitor orientation-independent reaction activity of AuNRs. Data analytics are introduced to determine a large number of AuNRs orientation obtained from a series of polarized DFM images, allowing us to real-time monitor reaction activity of AuNRs at all orientations, and also makes it possible to study the global and local reaction processes of AuNRs at single-particle level. Our method is expected to provide a new strategy for analytical study and single-particle sensing in chemistry. (c) 2021 Elsevier Inc. All rights reserved.