화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.2, 180-189, April, 2021
9-Arylated Carbazole을 주리간드로 사용하는 Heteroleptic Iridium(III) 착물의 합성과 분광학적 특성
Synthesis and Photoluminescence Properties of Heteroleptic 9-Arylated Carbazole Iridium(III) Complexes
E-mail:,
초록
Cu(I) 촉매를 사용하여 열반응을 이용한 N-heteroaryl carbazole을 합성하였고 이를 새로운 heteroleptic Ir(III) 착물 합성을 위한 주리간드로 사용하였다. 새로운 Ir(III) 착물은 일반적인 Ir(III) 착물이 가지는 5각 고리가 아닌 6각 고리를 주리간드와 Ir 금속 결합 사이에서 형성하는 것으로 X-ray 단결정구조를 통해 확인할 수 있었다. 합성한 Ir(III) 착물들은 좋은 인광 특성을 나타내므로 OLED 발광층 재료물질로의 가능성을 보여주었다. 주리간드와 보조리간드 변화에 따른 분광학적 특성을 고찰하였는데 PL 최대 발광 파장(λmax) 변화는 보조리간드가 Ir 금속과 더 강한 결합을 만들수록 단파장 쪽으로 이동하는 것을 발견하였다. 또한, 주리간드에 대해서는 Ir-N 결합을 만드는 헤테로아릴 그룹의 아로마틱 고리 전자밀도가 커질수록 단파장 쪽으로 이동하는 경향이 있는 것을 알 수 있었다.
N-Heteroaryl carbazoles were synthesized with thermal heating in the presence of Cu(I) catalyst and used as main ligands for the preparation of heteroleptic Ir(III) complexes. In these Ir(III) complexes, 6-membered ring structures of Ir-ligand chelation were found by single crystal X-ray diffraction. The blue shift of photoluminescence for Ir(III) complexes was observed in the case of the strong bond formation between Ir and ancillary ligands. It also has been clearly shown that the higher electron density of heteroaryl aromatic ring influenced shorter maximum photoluminescence wavelength (λmax) of Ir(III) complexes. Since the new Ir(III) complexes showed good phosphorescent emission, they could be potentially used as OLED materials in the emission Layer.
  1. Zou SJ, Shen Y, Xie FM, Chen JD, YQ, Li JX, Mater. Chem. Front., 4, 788 (2020)
  2. Aleksanrova M, Adv. Mater. Sci. Eng., 2016, 408169 (2016)
  3. Ma YG, Shen HY, Che CM, Synth. Met., 94, 245 (1998)
  4. Baldo MA, O'Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR, Nature, 395(6698), 151 (1998)
  5. Adachi C, Baldo MA, Thompson ME, Forrest SR, J. Appl. Phys., 90, 5048 (2001)
  6. Yu T, Liu L, Xie Z, Ma Y, Sci. China Chem., 58, 907 (2015)
  7. Xu H, Chen R, Sun Q, Lai W, Su Q, Huang W, Liu X, Chem. Soc. Rev., 43, 3259 (2014)
  8. Shin H, Lee JH, Moon CK, Huh JS, Sim B, Kim JJ, Adv. Mater., 28(24), 4920 (2016)
  9. Yusoff ARBM, Huckba AJ, Nazeeruddin MK, Top. Curr. Chem., 375, 39 (2017)
  10. Okamura N, Ishiguro K, Maeda T, Yagi S, Chem. Lett., 46(8), 1086 (2017)
  11. Chen , Zhang H, Wen D, Wu W, Zeng Q, Chen S, Wong WY, Chem. Sci., 11, 2342 (2020)
  12. Ledwon P, Org. Electron., 75, 105422 (2019)
  13. Wex B, Kaafarani BR, J. Mater. Chem. C, 5, 8622 (2017)
  14. Hong MK, Ravva P, Winget P, Bredas JL, Chem. Mater., 5791-5798 (2016).
  15. Oh CS, Pereira DS, Han SH, Park HJ, Higginbotham HF, Monkman AP, Lee JY, ACS Appl. Mater. Interfaces, 10, 35420 (2018)
  16. Jayakumar J, Wu TL, Huang MJ, Huang PY, Chou YT, Lin HW, Cheng CH, ACS Appl. Mater. Interfaces, 11, 21042 (2019)
  17. Orselli E, Kottas GS, Konradsson AE, Coppo P, Frohlich R, Frtshlich R, De Cola L, van Dijken A, Buchel M, Borner H, Inorg. Chem., 46(26), 11082 (2007)
  18. Baek SY, Kwak SY, Kim ST, Hwang KY, Koo H, Son WJ, Choi B, Choi H, Baik MH, Nat. Commun., 11, 2292 (2020)
  19. Kwon JK, Cho JH, Ryu YS, Oh SH, Yum EK, Tetrahedron, 67, 4820 (2011)
  20. Cho JH, Ryu YS, Oh HS, Kwon JK, Yum EK, Bull. Korean Chem. Soc., 32, 2461 (2011)
  21. Case FH, J. Org. Chem., 30, 931 (1965)
  22. McDonald AR, Lutz M, von Chrzanowski LS, van Klink GPM, Spek AL, van Koten G, Inorg. Chem., 47(15), 6681 (2008)
  23. Nonoyama M, Bull. Chem. Soc. Jpn., 47, 767 (1974)
  24. (a) Spek AL, Acta Crystallogr. Sect. A, 46, C34 (1990). (b) Spek AL, Utrecht University, Utrecht (1998).
  25. Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Lee HE, Adachi C, Burrows PE, Forrest SR, Thompson ME, J. Am. Chem. Soc., 123(18), 4304 (2001)
  26. Colombo MG, Brunold TC, Riedener T, Gudel HU, Fortsch M, Burgi HB, Inorg. Chem., 33(3), 545 (1994)