화학공학소재연구정보센터
Inorganic Chemistry, Vol.60, No.3, 1561-1570, 2021
Defect Trapping and Phase Separation in Chemically Doped Bulk AgF2
We report a computational survey of chemical doping of silver(II) fluoride, which has recently attracted attention as an analogue of La2CuO4-a known precursor of high-temperature superconductors. By introducing fluorine defects (vacancies or interstitial adatoms) into the crystal structure, we obtain non-stoichiometric, electron- and hole-doped polymorphs of AgF2 +/- x. We find that the ground-state solutions show a strong tendency for localization of defects and of the associated electronic states, and the resulting doped phases exhibit insulating or semiconducting properties. Furthermore, the distribution of Ag(I)/Ag(III) sites which appear in the crystal structure points to the propensity of the AgF2 system for phase separation upon chemical doping, which is in line with observations from previous experimental attempts. Overall, our results indicate that chemical modification may not be a feasible way to achieve doping in bulk silver(II) fluoride, which is considered essential for the emergence of high-T-c superconductivity.