화학공학소재연구정보센터
Macromolecular Research, Vol.29, No.3, 224-229, March, 2021
Near-Infrared Laser-Responsive Photothermal Bubble-Generating PLA Nanoparticles for Controlled Drug Release
E-mail:
Stimuli-responsive drug delivery systems can respond to specific external stimuli, resulting in improved treatment outcomes and reduced side effects from their controllable site-specific release ability. The aim of this study was to develop a thermo-responsive bubble-generating drug release platform by near-infrared (NIR) laser irradiation using melanin-perfluorohexane-methotrexate-polylactic acid (Mel @PFH@MT -PLA) nanoparticles. Mel@PFH@MTX-PLA nanoparticles were successfully prepared without precipitation or aggregation. By adjusting the amount of perfluorohexane (PFH), a size of Mel@PFH@MTX-PLA nanoparticles with optimal conditions was about 52.75 ± 1.41 nm. Due to the photothermal conversion properties of melanin, the temperature of the Mel@PFH@MTX-PLA nanoparticles was increased to about 59.2 oC after 7min of 808 nm NIR laser irradiation at a power density of 1.5 W/cm2. The NIR laser-induced temperature increase triggered additional drug release and caused the phase transition of PFH, resulting in dramatic bubble generation. The resultant Mel@PFH@MTX-PLA nanoparticles can be utilized in biomedical applications as promising carriers for localized and controlled drug delivery.
  1. Liu J, Bu W, Pan L, Shi J, Angew. Chem.-Int. Edit., 125, 4471 (2013)
  2. Zhu Y, Kaskel S, Ikoma T, Hanagata N, Microporous Mesoporous Mater., 123, 107 (2009)
  3. Kubo T, Tachibana K, Naito T, Mukai S, Akiyoshi K, Balachandran J, Otsuka K, ACS Biomater. Sci. Eng., 5, 759 (2018)
  4. Sun W, Jiang H, Wu X, Xu Z, Yao C, Wang J, Qin M, Jinag Q, Wang W, Shi D, Cao Y, Nano Res., 12, 115 (2019)
  5. Chen HC, Liu DY, Guo ZJ, Chem. Lett., 45(3), 242 (2016)
  6. Chen Z, Zhang Z, Chen M, Xie S, Wang T, Li X, J. Mater. Chem. B, 7, 1415 (2016)
  7. Xiong X, Xu Z, Huang H, Wang Y, Zhao J, Guo X, Zhou S, Biomaterials, 245, 119840 (2020)
  8. Chen X, Chen Y, Yan M, Qiu M, ACS Nano, 6, 2550 (2012)
  9. You J, Shao R, Wei X, Gupta S, Li C, Small, 6, 1022 (2010)
  10. Sadat ME, Baghvador MK, Dunn AW, Wagner HP, Ewing RC, et al., Appl. Phys. Lett., 105, 091903 (2014)
  11. Robinson JT, Tabakman SM, Liang YY, Wang HL, Casalongue HS, Vinh D, Dai HJ, J. Am. Chem. Soc., 133(17), 6825 (2011)
  12. Wang L, Shi J, Zhang H, Li H, Gao Y, Wang , Wang H, Li L, Zhang C, Chen C, Zhang Z, Zhang Y, Biomaterials, 34, 262 (2013)
  13. Cheng X, Sun R, Yin L, Chai Z, Shi H, Gao M, Adv. Mater., 29, 160489 (2017)
  14. Kim M, Kim HS, Kim MA, Ryu H, Jeong HJ, Lee CM, Macromol. Biosci., 17, 160037 (2017)
  15. Kim MA, Yoon SD, Kim EM, Jeong HJ, Lee CM, Nanotechnology, 29, 415101 (2018)
  16. Kim MA, Yoon SD, Lee CM, Int. J. Biol. Macromol., 103, 839 (2017)
  17. Jiang Q, Luo Z, Men Y, Yang P, Peng H, Guo R, Tian Y, Pang Z, Yang W, Biomaterials, 143, 29 (2017)
  18. Zhu D, Fan F, Huang C, Zhang Z, Qin Y, Lu L, Wang H, Jin X, Zhoa H, et al., Acta Biomater., 75, 386 (2018)
  19. Jose G, Lu YJ, Chen HA, Hsu HL, Hung JT, Anilkumar TS, Chen JP, J. Magn. Magn. Mater., 474, 355 (2019)
  20. Sahle FF, Gulfam M, Lowe TL, Drug Discov. Today, 23, 992 (2018)
  21. Chen KJ, Chaung EY, Wey SP, Lin KJ, Cheng F, Lin CC, et al., ACS Nano, 8, 5105 (2014)
  22. Desgouilles S, Vauthier C, Bazile D, Vacus J, Grossiord JL, Veillard M, Couvreur P, Langmuir, 19(22), 9504 (2003)
  23. Sheeran PS, Dayton PA, Scientifica, 2014 (2014)
  24. Slominski RM, Zmijewski MA, Slominski AT, Exp. Dermatol., 24, 258 (2015)
  25. Liu YL, Ai KL, Liu JH, Deng M, He YY, Lu LH, Adv. Mater., 25(9), 1353 (2013)
  26. Zhao Y, Song W, Wang D, Ran H, Wang R, Yao Y, Wang Z, Zheng Y, Li P, ACS Appl. Mater. Interfaces, 7, 14231 (2015)