Macromolecular Research, Vol.29, No.3, 224-229, March, 2021
Near-Infrared Laser-Responsive Photothermal Bubble-Generating PLA Nanoparticles for Controlled Drug Release
E-mail:
Stimuli-responsive drug delivery systems can respond to specific external stimuli, resulting in improved treatment outcomes and reduced side effects from their controllable site-specific release ability. The aim of this study was to develop a thermo-responsive bubble-generating drug release platform by near-infrared (NIR) laser irradiation using melanin-perfluorohexane-methotrexate-polylactic acid (Mel @PFH@MT -PLA) nanoparticles. Mel@PFH@MTX-PLA nanoparticles were successfully prepared without precipitation or aggregation. By adjusting the amount of perfluorohexane (PFH), a size of Mel@PFH@MTX-PLA nanoparticles with optimal conditions was about 52.75 ± 1.41 nm. Due to the photothermal conversion properties of melanin, the temperature of the Mel@PFH@MTX-PLA nanoparticles was increased to about 59.2 oC after 7min of 808 nm NIR laser irradiation at a power density of 1.5 W/cm2. The NIR laser-induced temperature increase triggered additional drug release and caused the phase transition of PFH, resulting in dramatic bubble generation. The resultant Mel@PFH@MTX-PLA nanoparticles can be utilized in biomedical applications as promising carriers for localized and controlled drug delivery.
Keywords:near-infrared laser;stimuli-responsive drug release;thermo-responsive bubble-generating nanoparticles;melanin;photothermal effect
- Liu J, Bu W, Pan L, Shi J, Angew. Chem.-Int. Edit., 125, 4471 (2013)
- Zhu Y, Kaskel S, Ikoma T, Hanagata N, Microporous Mesoporous Mater., 123, 107 (2009)
- Kubo T, Tachibana K, Naito T, Mukai S, Akiyoshi K, Balachandran J, Otsuka K, ACS Biomater. Sci. Eng., 5, 759 (2018)
- Sun W, Jiang H, Wu X, Xu Z, Yao C, Wang J, Qin M, Jinag Q, Wang W, Shi D, Cao Y, Nano Res., 12, 115 (2019)
- Chen HC, Liu DY, Guo ZJ, Chem. Lett., 45(3), 242 (2016)
- Chen Z, Zhang Z, Chen M, Xie S, Wang T, Li X, J. Mater. Chem. B, 7, 1415 (2016)
- Xiong X, Xu Z, Huang H, Wang Y, Zhao J, Guo X, Zhou S, Biomaterials, 245, 119840 (2020)
- Chen X, Chen Y, Yan M, Qiu M, ACS Nano, 6, 2550 (2012)
- You J, Shao R, Wei X, Gupta S, Li C, Small, 6, 1022 (2010)
- Sadat ME, Baghvador MK, Dunn AW, Wagner HP, Ewing RC, et al., Appl. Phys. Lett., 105, 091903 (2014)
- Robinson JT, Tabakman SM, Liang YY, Wang HL, Casalongue HS, Vinh D, Dai HJ, J. Am. Chem. Soc., 133(17), 6825 (2011)
- Wang L, Shi J, Zhang H, Li H, Gao Y, Wang , Wang H, Li L, Zhang C, Chen C, Zhang Z, Zhang Y, Biomaterials, 34, 262 (2013)
- Cheng X, Sun R, Yin L, Chai Z, Shi H, Gao M, Adv. Mater., 29, 160489 (2017)
- Kim M, Kim HS, Kim MA, Ryu H, Jeong HJ, Lee CM, Macromol. Biosci., 17, 160037 (2017)
- Kim MA, Yoon SD, Kim EM, Jeong HJ, Lee CM, Nanotechnology, 29, 415101 (2018)
- Kim MA, Yoon SD, Lee CM, Int. J. Biol. Macromol., 103, 839 (2017)
- Jiang Q, Luo Z, Men Y, Yang P, Peng H, Guo R, Tian Y, Pang Z, Yang W, Biomaterials, 143, 29 (2017)
- Zhu D, Fan F, Huang C, Zhang Z, Qin Y, Lu L, Wang H, Jin X, Zhoa H, et al., Acta Biomater., 75, 386 (2018)
- Jose G, Lu YJ, Chen HA, Hsu HL, Hung JT, Anilkumar TS, Chen JP, J. Magn. Magn. Mater., 474, 355 (2019)
- Sahle FF, Gulfam M, Lowe TL, Drug Discov. Today, 23, 992 (2018)
- Chen KJ, Chaung EY, Wey SP, Lin KJ, Cheng F, Lin CC, et al., ACS Nano, 8, 5105 (2014)
- Desgouilles S, Vauthier C, Bazile D, Vacus J, Grossiord JL, Veillard M, Couvreur P, Langmuir, 19(22), 9504 (2003)
- Sheeran PS, Dayton PA, Scientifica, 2014 (2014)
- Slominski RM, Zmijewski MA, Slominski AT, Exp. Dermatol., 24, 258 (2015)
- Liu YL, Ai KL, Liu JH, Deng M, He YY, Lu LH, Adv. Mater., 25(9), 1353 (2013)
- Zhao Y, Song W, Wang D, Ran H, Wang R, Yao Y, Wang Z, Zheng Y, Li P, ACS Appl. Mater. Interfaces, 7, 14231 (2015)