Current Applied Physics, Vol.20, No.8, 953-960, 2020
Microstructure evolution of room-temperature-sputtered ITO films suitable for silicon heterojunction solar cells
Thickness influence on structural, optical and electrical properties of sputtered indium tin oxide (ITO) with thickness ranging from 60 up to 430 nm films has been studied. At the increase of the film thickness crystallinity degree and grain size increased, whereas tensile structural distortion as well as resistivity decreased. It was observed that a microstructure evolution takes place: the initial amorphous layer evolved in polycrystalline phase, with a grain-subgrain surface morphology. Carrier concentration increased at the increase of the film thickness and a general relationship between electrical characteristics and structural distortion has been found. In thinner films larger tensile distortion allowed to include larger amount of interstitial O and/or Sn atoms in the lattice. An appreciable impact of the thickness was also observed on electro-optical properties in terms of changes in energy gap, resistivity and optical absorption. Silicon heterojunction solar cells have been produced and Jsc as high as 33.0 mA/cm(2) has been obtained.
Keywords:TCO Transparent conductive oxides;Indium tin oxide;Thin films;Sputtering;Microstructure;Heterojunction