Chinese Journal of Chemical Engineering, Vol.28, No.12, 3052-3060, 2020
Enhancing hydrothermal stability of framework Al in ZSM-5: From the view on the transformation between P and Al species by solid-state NMR spectroscopy
HZSM-5, with good surface acidity and shape selectivity, was reported as hydrocarbon cracking catalyst for multiple decades, however the hydrothermal stability, especially dealumination of tetrahedrally coordinated framework aluminum (TFAl), has been proved extensively as one of the major challenges during reaction-regeneration process. Phosphorus was proposed to stabilize TFAl and indeed it enhanced the hydrothermal stability. Unfortunately, most of the phosphorus species would remain outside of the zeolite pore, mainly as polyphosphate species, and block the micropore severely, with only a limited portion introduced into the channel being able to interact with TFAl. Enlarging the pore size by alkali treatment (desilication) is one of the most convinced methods, but the details about specific P species during alkali treatment and its transformation upon hydrothermal activation is not acquired, thus the mechanism has not been fully understood. Herein, the P-containing species and its transformation during direct P modification and add/alkali treatment followed by P modification have been studied, and the mechanism on the interaction between P and Al species has been investigated, using several analytical methods, especially Solid-state nuclear magnetic resonance (SSNMR) spectroscopy. It was found that the combination of desilication and subsequent phosphorus modification can enhance the activity of the ZSM-5 for the cracking of ethylcydohexane, due to the better hydrothermal stabilization of acid sites by the enhanced interaction between phosphorus and TFAl, resulting from the improved accessibility of TFAl because of the successful generation of mesoporosity. Whereas the acid treatment followed by phosphorus modification, with declined retention of crystallinity and P/Al ratio, monoclinic/orthorhombic transition during steam activation, and the failed generation of mesopores, would cause obvious aggregation of the phosphorus species and could not improve the hydrothermal stability of the ZSM-5 effectively, and the direct phosphatation turned out much worse. Finally, a specific index that the intensity of the signal at 39 in Al-27 MAS NMR spectra before steam activation was proposed as the indicator for determining the efficiency of phosphorus modification. And the proposed mechanism on the interaction between phosphorus and TFAl during the phosphorus modification could also be applicable in other zeolites. (C) 2020 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd. All rights reserved.