화학공학소재연구정보센터
Biotechnology and Bioengineering, Vol.118, No.3, 1213-1223, 2021
PAMAM G4.5 dendrimers for targeted delivery of ferulic acid and paclitaxel to overcome P-glycoprotein-mediated multidrug resistance
In this study, we prepared ferulic acid (FA) and paclitaxel (PTX) co-loaded polyamidoamine (PAMAM) dendrimers conjugated with arginyl-glycyl-aspartic acid (RGD) to overcome P-glycoprotein (P-gp)-mediated multidrug resistance (MDR). FA was released in greater extent (80%) from the outer layer of the dendrimers compared with PTX (70%) from the interior of the dendrimers. FA improved intracellular availability of PTX via P-gp modulation in drug-resistant cells. In vitro drug uptake data show higher PTX delivery with RGD-PAMAM-FP than with PAMAM-FP in drug resistant KB CH-R 8-5 cell lines. This indicates that RGD facilitates intracellular PTX accumulation through active targeting in multidrug-resistant KB CH-R 8-5 cells. The terminal deoxynucleotidyl transferase 2MODIFIER LETTER PRIME-deoxyuridine 5MODIFIER LETTER PRIME-triphosphate nick-end labeling assay data and membrane potential analysis in mitochondria confirm the enhanced anticancer potential of RGD-PAMAM-FP nanoaggregates in drug-resistant cells. We also confirmed by the increased protein levels of proapoptotic factors such as caspase 3, caspase 9, p53, and Bax after treatment with RGD-PAMAM-FP nanoaggregates and also downregulates antiapoptotic factors. Hence, FA-PTX co-loaded, RGD-functionalized PAMAM G4.5 dendrimers may be considered as an effective therapeutic strategy to induce apoptosis in P-gp-overexpressing, multidrug-resistant cells.