Biochemical and Biophysical Research Communications, Vol.529, No.4, 1033-1037, 2020
Neuropathophysiological significance of the c.1449T > C/p.(Tyr64Cys) mutation in the CDC42 gene responsible for Takenouchi-Kosaki syndrome
Takenouchi-Kosaki syndrome (TKS) is an autosomal dominant congenital syndrome, of which pathogenesis is not well understood. Recently, a heterozygous mutation c.1449T > C/p.(Tyr64Cys) in the CDC42 gene, encoding a Rho family small GTPase, has been demonstrated to contribute to the TKS clinical features, including developmental delay with intellectual disability (ID). However, specific molecular mechanisms underlying the neuronal pathophysiology of TKS remain largely unknown. In this study, biochemical analyses revealed that the mutation moderately activates Cdc42. In utero electroporationbased acute expression of Cdc42-Y64C in ventricular zone progenitor cells in embryonic mice cerebral cortex resulted in migration defects and cluster formation of excitatory neurons. Expression the mutant in primary cultured hippocampal neurons caused impaired axon elongation. These data suggest that the c.1449T > C/p.(Tyr64Cys) mutation causes altered CDC42 function and results in defects in neuronal morphology and migration during brain development, which is likely to be responsible for pathophysiology of psychomotor delay and ID in TKS. p (c) 2020 Elsevier Inc. All rights reserved.