Applied Biochemistry and Biotechnology, Vol.193, No.4, 1011-1022, 2021
Enhanced Enzymatic Hydrolysis and Structure Properties of Bamboo by Moderate Two-Step Pretreatment
A moderate two-step pretreatment method was investigated to improve the enzymatic saccharification of bamboo residues. SEM and FTIR were employed to characterize the structure changes. Fed-batch enzymatic saccharification was performed to obtain high concentration of fermentable sugar. Bamboo was impregnated at low severity of conditions (room temperature, 2% H2SO4 or 2% NaOH, 48 h) to initially alter the structure of bamboo, and then further pretreated by steam explosion at 1.0 MPa for 6 min. The highest delignification of 51% and the highest enzymatic hydrolysis of 47.1% were reached at 2% NaOH impregnation followed by steam explosion. The changes in the structural characteristics showed beneficial effects on the enzymatic hydrolysis. When a mixer of cellulase (30 FPU) and beta-glucosidase (10 CBU) was further used, the maximum enzymatic hydrolysis of 78.9% and total glucose yield of 68.2% were obtained. The maximum sugar release from the holocellulose was 500 mg/g bamboo, approximately 83.3% conversion efficiency based on monomeric sugar recovery. With fed-batch saccharification, a final substrate loading of 30% brought 107.7 g/L glucose, 35.81 g/L xylose, and 7.82 g/L arabinose release, respectively. This study provided an effective strategy for potential utilization of bamboo residues.
Keywords:Bamboo;Moderate two-step pretreatment;Enzymatic hydrolysis;Structure analysis;Fed-batch saccharification