Journal of Industrial and Engineering Chemistry, Vol.96, 202-212, April, 2021
Reduced cytotoxicity of CTAB-templated silica layer on gold nanorod using fluorescence dyes and its application in cancer theranostics
E-mail:
Cytotoxicity of cetyltrimethylammonium bromide (CTAB)-templated silica-coated gold nanorod
(CGNR@SiO2) was confirmed to be severe even after the washing process because of the residual CTAB surfactant. Calcination to eliminate the CTAB template induced dissolution of the gold nanorod (GNR) core and caused a blue-shift in the longitudinal surface plasmon resonance (LSPR) mode of the GNR from the near-infrared to visible wavelength. In contrast, the CTAB template was effectively removed from CGNR@SiO2 without interference of the plasmonic property of the core GNR by aminefunctionalized fluorescence dyes such as methylene blue (MB) and rhodamine B (RB). The RB was more efficient in substituting the residual CTAB through electrostatic interactions than the MB. Moreover, the resulting products exhibited excellent surface-enhanced Raman scattering performance to detect a few cancer cells. The MB and RB molecules as visible light photosensitizer (PS) were activated by near-infrared (NIR) excitation light through transfer of the NIR-driven plasmonic hot electrons from the core GNR to the PS molecules. It is noteworthy that the RB-loaded CGNR@SiO2 exhibited excellent cancer cell killing efficiency via generation of abundant reactive oxygen species (ROS) under NIR laser irradiation, although the concentration of the intracellular GNR was too low to induce the photothermal effect.
Keywords:Cytotoxicity;CTAB-templated silica layer coated gold;nanorod;SERS;Photodynamic effect;Photothermal effect
- Luo GF, Chen WH, Lei Q, Qiu WX, Liu YX, Cheng YJ, Zhang XZ, Adv. Funct. Mater., 26(24), 4339 (2016)
- Boerigter C, Campana R, Morabito M, Linic S, Nature Commun., 7, 10545 (2016)
- Chen X, Zhang Q, Li J, Yang M, Zhao N, Xu FJ, ACS Nano, 12, 5646 (2018)
- Kumar D, Lee SB, Jeon YH, Park CH, Kim CS, J. Ind. Eng. Chem., 65, 244 (2018)
- Manzano M, Vallet-Regi M, Adv. Funct. Mater., 30, 190263 (2020)
- Modak A, Barui AK, Patra CR, Bhaumik A, Chem. Commun., 49, 7644 (2013)
- Mishraae S, Mannaa K, Kayalb U, Sahaa M, Chatterjeeb S, Chandra D, Hara M, Dattae S, Bhaumik A, Saha KD, RSC Adv., 10, 23148 (2020)
- Gorelikov I, Matsuura N, Nano Lett., 8, 369 (2008)
- Liu Y, Xu M, Chen Q, Hu W, Zhao X, Qiao M, Hu H, Liang Y, Zhu H, Chen D, Int. J. Nanomed., 10, 4747 (2015)
- Gao Z, Burrows ND, Valley NA, Schatz GC, Murphy CJ, Haynes CL, Analyst, 141, 5088 (2016)
- Cui X, Cheng W, Han X, J. Mater. Chem. B, 6, 8078 (2018)
- Jia YP, Shi K, Liao JF, Peng JR, Hao Y, Qu Y, Chen LJ, Liu L, Yuan X, Qian ZY, Wei XW, Small Methods, 4, 190079 (2020)
- Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Nature, 464, 392 (2010)
- Ding SY, You EM, Tian ZQ, Moskovits M, Chem. Soc. Rev., 46, 4042 (2017)
- Zong C, Xu MX, Xu LJ, Wei T, Ma X, Zheng XS, Hu R, Ren B, Chem. Rev., 118(10), 4946 (2018)
- Yildirim A, Turkaydin M, Garipcan B, Bayindir M, RSC Adv., 6, 32060 (2016)
- He Q, Zhang Z, Gao Y, Shi J, Li Y, Small, 5, 2722 (2009)
- Feng J, Wang Z, Shen B, Zhang L, Yang X, He N, RSC Adv., 4, 28683 (2014)
- Swamy PCA, Sivaraman G, Priyanka RN, Raja SO, Ponnuvel K, Shanmugpriya J, Gulyani A, Coord. Chem. Rev., 411, 213 (2020)
- Rao VG, Aslam U, Linic S, J. Am. Chem. Soc., 141(1), 643 (2019)
- Jana NR, Gearheart L, Murphy CJ, J. Phys. Chem. B, 105(19), 4065 (2001)
- Li C, Feng K, Xie N, Zhao W, Ye L, Chen B, Tung CH, Wu LZ, ACS Appl. Nano Mater., 3, 5070 (2020)
- Shim KD, Jang ES, Bull. Kor. Chem. Soc., 39, 936 (2018)
- Hao B, Wang K, Zhou Y, Sui C, Wang L, Bai R, Yang Z, ACS Omega, 5, 1109 (2020)
- Kim DW, Moon JM, Park SY, Choi JS, Cho WK, J. Ind. Eng. Chem., 68, 42 (2018)
- Li Y, Li N, Pan W, Yu Z, Yang L,Tang B, Appl. Mater. Interfaces, 9, 2123 (2017)
- Nithiyanantham U, Ede SR, Ozaydin MF, Liang H, Rathishkumar A, Kunda S, RSC Adv., 5, 89621 (2015)
- Li K, Zeng Z, Xiong J, Yan L, Guo H, Liu S, Dai Y, Chen T, Colloids Surf. A: Physicochem. Eng. Asp., 465, 113 (2015)
- Wang Q, Zhao ZL, Cai C, Li H, Gu M, J. Mater. Chem. A, 7, 23812 (2019)
- Albrecht W, van de Glind A, Yoshida H, Isozaki Y, Imhof A, et al., Ultramicroscopy, 193, 97 (2018)
- Kumar R, Chen HT, Escoto JLV, Lin VSY, Pruski M, Chem. Mater., 18, 4319 (2006)
- Popolan DM, Bernhardt TM, Europ. Phys. J. D, 63, 251 (2011)
- Seo SH, Kim BM, Joe A, Han HW, Chen X, Cheng Z, Jang ES, Biomaterials, 35, 3309 (2014)
- del Cano R, Gonzalez JMG, Rodriguez JG, Obrero GS, Madueno R, Blazquez M, Pineda T, Nanoscale, 12, 658 (2020)
- Wang W, Chen H, Fang J, Lai M, Appl. Surf. Sci., 467-468, 1187 (2019)
- Khan Z, Bashir O, Khan MN, Khan TA, Thabaiti SAA, J. Mol. Biol., 248, 1096 (2017)
- Bera K, Ghosh T, Basak S, J. Phys. Chem. C, 119, 1800 (2015)
- Sarina S, Waclawik ER, Zhu H, Green Chem., 15, 1814 (2013)
- Choi JS, Kim SY, J. Ind. Eng. Chem., 85, 66 (2020)
- Kim G, Lee YEK, Xu H, Philbert MA, Kopelman R, Anal. Chem., 82, 2165 (2010)