화학공학소재연구정보센터
Polymer(Korea), Vol.45, No.2, 322-328, March, 2021
(-)-Epigallocatechin Gallate (EGCG)를 담지한 젤라틴 나노입자의 나노침전법을 이용한 제조 및 특성
Preparation of (-)-Epigallocatechin Gallate (EGCG)-encapsulated Gelatin Nanoparticles by Nanoprecipitation and Their Characteristics
E-mail:
초록
본 연구에서는 (-)-epigallocatechin gallate(EGCG)의 방출효율 개선과 서방(slow release) 기간 연장을 위하여 Lee 등이 보고한 나노침전법을 적용하여(Bioprocess Biosyst. Eng., 2012, 35, 297-307; J. Biomater. Sci. Polym. Ed., 2011, 22, 753-771), 극성 비양자성 용매인 dimethyl sulfoxide와 에탄올을 각각 용매와 비용매로 사용하여 EGCG를 담지한 젤라틴 나노전달체를 제조하였다. EGCG 담지 젤라틴 나노입자의 평균 크기는 160.5(±7.2) nm이었고 평균 제타포텐셜 값은 .13.9(±0.14) mV이었다. 본 연구의 방출실험에서 젤라틴 나노입자에 담지된 EGCG의 66.5%가 방출되었다. 본 연구의 방출실험에서 EGCG 담지 젤라틴 나노입자의 방출특성은, 트립신(trypsin)을 첨가하여 EGCG의 누적방출량이 가속화되어 방출이 급격히 증가한 2-3시간을 제외한 방출시간인 약 60시간 동안 EGCG의 서방성을 보였다.
In this study, gelatin nanoparticles loaded with (-)-epigallocatechin gallate (EGCG) were prepared by nanoprecipitation reported by Lee et al. (Bioprocess Biosyst. Eng., 2012, 35, 297-307; J. Biomater. Sci. Polym. Ed., 2011, 22, 753-771) in order to improve cumulative EGCG-release efficiency as well as to extend the period of slow release of EGCG, using dimethyl sulfoxide, which is a polar aprotic solvent, and ethanol as a solvent and a nonsolvent, respectively. Average size and zeta potential of the gelatin nanoparticles loaded with EGCG (GNLE) were 160.5(±7.2) nm and -13.9(±0.14) mV, respectively. In EGCG-release studies, GNLE released 66.5% of the amount of encapsulated EGCG. Moreover, GNLE showed a slow EGCG-release behavior for ca. 60 h except for the period of 2-3 h during which EGCGcumulative release was increased rapidly due to the acceleration of EGCG-release by the addition of trypsin.
  1. Chowdhury A, Sarkar J, Chakraborti T, Pramanik PK, Chakraborti S, Biomed. Pharmacother, 78, 50 (2016)
  2. Afzal M, Safer AM, Menon M, Inflammopharmacology, 23, 151 (2015)
  3. Botten D, Fugallo G, Fraternali F, Molteni C, J. Phys. Chem. B, 119(40), 12860 (2015)
  4. Graham HN, Prev. Med., 21, 334 (1992)
  5. Cirillo G, Curcio M, Vittorio O, Crit. Rev. Food Sci. Nutr., 56, 326 (2016)
  6. Singh G, Kaur H, Harikumar SL, Int. J. Pharm. Phytopharm. Res., 4, 223 (2015)
  7. Zaveri NT, Life Sci., 78, 2073 (2006)
  8. Crespy V, Williamson GA, J. Nutr., 134, 3431S (2004)
  9. Islam MA, Recent Pat. Cardiovasc. Drug Discov., 7, 88 (2012)
  10. Sanvicens N, Marco MP, Trends Biotechnol., 26, 425 (2008)
  11. Huo C, Wan SB, Lamet WH, Inflammopharmacology, 16, 248 (2008)
  12. Mogosanu GD, Grumezescu AM, Bejenaru C, Bejenaru LE, Int. J. Pharm., 510, 419 (2016)
  13. Tseng CL, Wang TW, Dong GC, Wu SYH, Young TH, Shieh MJ, Lou PJ, Lin FH, Biomaterials, 28, 3996 (2007)
  14. Ofokansi K, Winter G, Fricker G, Coester C, Eur. J. Pharm. Biopharm., 76, 1 (2010)
  15. Parikh SS, Mehta HH, Doshi VPA, Int. J. Pharm. Biol. Sci., 2, 183 (2012)
  16. Lu Z, Yeh TK, Tsai M, Au JLS, Wientjes MG, Clin. Cancer. Res., 10, 7677 (2004)
  17. Kommareddy S, Amiji M, Cancer Gene. Ther., 14, 488 (2007)
  18. Kaul G, Amiji M, Pharm. Res., 22, 951 (2005)
  19. Kommareddy S, Amiji M, J. Pharm. Sci., 96, 397 (2007)
  20. Coester CJ, Langer K, Von Briesen H, Kreuter J, J. Microencapsul., 17(2), 187 (2000)
  21. Han S, Li M, Liu X, Gao H, Wu Y, Colloids Surf. B: Biointerfaces, 102, 833 (2013)
  22. Zwiorek K, Dissertation Ludwig-Maximilians-University Munchen, 2006.
  23. Honda Y, Tanaka T, Tokuda T, Kashiwagi T, Kaida K, Hieda A, Umezaki Y, Hashimoto Y, Imai K, Matsumoto N, Baba S, Shimizutani K, Int. J. Mol. Sci., 16(6), 14143 (2015)
  24. Admire D, Nicolazzo JA, Larson I, Eur. J. Pharm. Sci., 41, 219 (2010)
  25. Chen YC, Yu SH, Tsai GJ, Tang DW, Mi FL, Peng YP, J. Agric. Food Chem., 58, 6728 (2010)
  26. Madhan B, Subramanian V, Rao JR, Nair BU, Ramasami T, Int. J. Biol. Macromol., 37, 47 (2005)
  27. Chang CY, Wang MC, Miyagawa T, Chen ZY, Lin FH, Chen KH, Liu GS, Tseng CL, Int. J. Nanomed., 12, 279 (2017)
  28. Lee EJ, Khan SA, Park JK, Lim KH, Bioprocess Biosyst. Eng., 35, 297 (2012)
  29. Lee EJ, Khan SA, Lim KH, J. Biomater. Sci. Polym. Ed., 22, 753 (2011)
  30. Lee EJ, Lim KH, Bioprocess Biosyst. Eng., 40, 1701 (2017)
  31. Lowery TH, Richardson KS, Mechanism and Theory in Organic Chemistry (3rd ed.); Harper Collins: New York, pp183 1987.
  32. Ka D, Seo M, Choi H, Kim EH, Kim SY, Chem. Commun., 46, 5722 (2010)
  33. Hwang JS, Gi HJ, Chin. J. Phys., 27, 50 (1989)