Polymer(Korea), Vol.45, No.2, 210-218, March, 2021
새로운 UV 중합법에 의한 비드형 고흡수성 고분자의 제조 및 특성분석
Preparation and Characterization of Bead-type Super-absorbent Polymer by Novel UV Polymerization
E-mail:
초록
본 연구에서는 acrylic acid, acrylamide와 다양한 함량의 N,N'-methylene-bis-acrylamide를 투입하여 새로운UV 중합법으로 비드형 고흡수성 고분자를 제조하였다. UV 개시제 함량별로 흡수능, 압축강도 분석을 통하여 UV개시제의 함량과 비드형 고흡수성 고분자의 화학적, 물리적 특성과의 상관관계를 도출하였다. UV 개시제 함량이 증가함에 따라 생성되는 고분자의 분자량이 작아 흡수능은 증가되었고, 반면에 압축강도는 감소하였다. 또한 각기 다른 방법으로 제조된 고흡수성 고분자와의 비교를 통해 본 연구에서 제조된 고흡수성 고분자의 압축강도가 1.03 kgf/cm2로 가장 높은 압축강도를 나타내었으며, 수분 방출속도 평가에서도 흡수한 물을 모두 방출하기까지 32일이 걸려 본 연구에서 UV 중합법으로 제조된 시료인 UV-SAB의 서방성이 가장 우수한 것을 알 수 있었다.
In this study, bead-type super-absorbent polymers (SAPs) were prepared via a novel UV polymerization method with acrylic acid, acrylamide, N,N'-methylene-bis-acrylamide and UV initiator. The relationships between the content of UV initiator and the physical/chemical properties and of SAPs were established by analyzing the absorption capacity and compression strength according to the content of UV initiator. As the content of UV initiator was increased, the absorption capacity of SAPs was gradually increased but the compressive strength was decreased owing to the formation of SAPs with low molecular weight. Also, the compressive strength (1.02 kgf/cm2) of the UV-polymerized SAPs was higher than those of SAPs obtained from other polymerization methods. Furthermore, the UV polymerized SAPs (UV-SAB) retained the absorbed water for 32 days, and thus the release properties of UV-SAB sample were found to be superior to other SAPs.
- Zhang M, Cheng Z, Zhao T, Liu M, Hu M, Li J, J. Agric. Food Chem., 62, 8867 (2014)
- Haraguchi K, Macromol. Symp., 256, 120 (2007)
- Liu KH, Liu TY, Chen SY, Liu DM, Acta Biomater, 4, 1038 (2008)
- El-Kady AF, Borham TI, Res. J. Agric. Biol. Sci., 9, 208 (2013)
- Chen XP, Shan GR, Huang J, Huang ZM, Weng ZX, J. Appl. Polym. Sci., 92(1), 619 (2004)
- Bhattacharya SS, Sen KK, Sen SO, Banerjee S, Kaity S, Int. J. Polym. Mater. Polym. Biomater., 13, 1015 (2011)
- Salmawi KME, El-Naggar AA, Ibrahim SM, Adv. Polym. Technol., 37, 515 (2018)
- Zhao Y, Su HJ, Fang L, Tan TW, Polym., 46, 5368 (2005)
- Bao Y, Ma Y, Sun Y, Carbohydr. Polym., 88, 589 (2012)
- Mudiyanselage TK, Neckers DC, J. Polym. Sci. A: Polym. Chem., 46(4), 1357 (2008)
- Omidian H, Hashemi SA, Sammes PG, Meldrum IA, Polym., 39, 6697 (1998)
- Kloosterboer JG, Lijten GFCM, Boots HMJ, Macromol. Symp., 24, 223 (1989)
- Feng L, Yang H, Dong X, Lei H, Chen D, J. Appl. Polym. Sci., 135, 45886 (2017)
- Pushpamalar V, Langford SJ, Ahmad M, Lim YY, Carbohydr. Polym., 64, 312 (2006)
- Ma HM, Davis RH, Bowman CN, Macromolecules, 33(2), 331 (2000)
- Feng E, Ma G, Wu Y, Wang H, Lei Z, Carbohydr. Polym., 111, 463 (2014)
- Hofmeister I, Landfester K, Taden A, Macromolecules, 47(16), 5768 (2014)
- Kim MH, Cho D, Kwon OH, Park WH, Text. Sci. Eng., 53, 397 (2016)
- Zhang M, Zhang S, Chen Z, Wang M, Cao J, Wang R, Polym., 11, 1891 (2019)
- Cheng S, Liu X, Zhen J, Lei Z, Carbohydr. Polym., 225, 115214 (2019)