Journal of Industrial and Engineering Chemistry, Vol.95, 101-108, March, 2021
Efficient and selective cancer therapy using pro-oxidant drug-loaded reactive oxygen species (ROS)-responsive polypeptide micelles
E-mail:,
High levels of intracellular reactive oxygen species (ROS) in cancer cells have emerged as a cancer-specific stimulus that can be utilized for anticancer therapy. Therefore, ROS-responsive drug carriers have attracted considerable attention as cancer-specific drug delivery systems. In this study, an ROS- responsive poly(ethylene glycol)-poly(methionine) [PEG-P(Met)] was synthesized to achieve safe and effective delivery of piperlongumine (PL), a pro-oxidant drug, into cancer cells. Nanoscale core.shell micelles encapsulating hydrophobic PL into a P(Met) core were prepared by self-assembling. The increased ROS levels in cancer cells triggered a hydrophobic-to-hydrophilic transition of the polypeptide, which led to the ROS-responsive disassembly of the micelles and consequently efficient PL release into cancer cells. Compared to free PL, PL-loaded PEG-P(Met) [(PL-PEG-P(Met)] micelles exhibited enhanced apoptosis in MCF-7 human breast cancer cells owing to the efficient intracellular delivery of PL. Notably, the PL-PEG-P(Met) micelles exhibited cancer-specific cytotoxicity in MCF-7 human breast cancer cells owing to a considerable increase in intracellular ROS level in the cells. These results demonstrate that the ROS-responsive PEG-P(Met)-based micelles are safe and effective drug carriers for intracellular delivery of PL, which can provide cancer-selective pro-oxidant therapy.
- Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK, Circ. Res., 122, 877 (2018)
- Ray PD, Huang BW, Tsuji Y, Cell. Signal., 24, 981 (2012)
- Circu ML, Aw TY, Free Radic. Biol. Med., 48, 749 (2010)
- Kim GH, Kim JE, Rhie SJ, Yoon S, Exp. Neurobiol., 24, 325 (2015)
- Schafer M, Werner S, Pharmacol. Res., 58, 165 (2008)
- Costa A, Scholer-Dahirel A, Mechta-Grigoriou F, Semin. Cancer Biol., 25, 23 (2014)
- Trachootham D, Alexandre J, Huang P, Nat. Rev. Drug Discov., 8, 579 (2009)
- Kim YS, Kim SM, Kang HC, Shim MS, J. Ind. Eng. Chem., 75, 238 (2019)
- Xu X, Saw PE, Tao W, Li Y, Ji X, Bhasin S, Liu Y, Ayyash D, Rassmusen J, Huo M, Shi J, Farokhzad OC, Adv. Mater, 29, 170014 (2017)
- Saravanakumar G, Kim J, Kim WJ, Adv. Sci., 4, 160012 (2017)
- Datta A, Mishra S, Manna K, Saha KD, Mukherjee S, Roy S, ACS Omega, 5, 9714 (2020)
- Tripathi SK, Biswal BK, Pharmacol. Res., 156, 104772 (2020)
- Choi DG, Venkatesan J, Shim MS, Int. J. Mol. Sci., 20, 3220 (2019)
- Liu Y, Chang Y, Yang C, Sang Z, Yang T, Ang W, Ye W, Wei Y, Gong C, Luo Y, Nanoscale, 6, 4325 (2014)
- Hong EJ, Lee DY, Kang HC, Kim YC, Shim MS, J. Ind. Eng. Chem., 63, 57 (2018)
- Johnson RP, Jeong YI, Choi E, Chung CW, Kang DH, Oh SO, Suh H, Kim I, Adv. Funct. Mater., 22(5), 1058 (2012)
- Skoulas D, Christakopoulos P, Stavroulaki D, Santorinaios K, Athanasiou V, Iatrou H, Polymers, 9, 208 (2017)
- Xu WG, Ding JX, Chen XS, Biomacromolecules, 18(10), 3291 (2017)
- Qiu L. Li Z, Qiao M, Long M, Wang M, Zhang X, Tian C, Chen D, Acta Biomater., 10, 2024 (2014)
- Wu H, Zhu L, Torchilin VP, Biomaterials, 34, 1213 (2013)
- Moskovitz J, Bar-Noy S, Williams WM, Berlett BS, Stadtman ER, Proc. Natl. Acad. Sci. U.S.A., 98, 12920 (2001)
- Moskovitz J, Berlett BS, Poston JM, Stadtman ER, Proc. Natl. Acad. Sci. U.S.A., 94, 9585 (1997)
- Yoo J, Rejinold NS, Lee D, Jon S, Kim YC, J. Control. Release, 265, 89 (2017)
- Tesauro D, Accardo A, Diaferia C, Milano V, Guillon J, Ronga L, Rossi F, Molecules, 24, 351 (2019)
- He C, Zhuang X, Tang Z, Tian H, Chen X, Adv. Healthc. Mater., 1, 48 (2012)
- Prabha S, Arya G, Chandra R, Ahmed B, Nimesh S, Artif. Cells Nanomed. Biotechnol., 44, 83 (2016)
- Halliwell B, Clement MV, Long LH, Febs Lett., 486, 10 (2000)
- Erudaitius D, Mantooth J, Huang A, Soliman J, Doskey CM, Buettner GR, Rodgers VGJ, Free Radic, Biol. Med., 120, 356 (2018)