화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.95, 101-108, March, 2021
Efficient and selective cancer therapy using pro-oxidant drug-loaded reactive oxygen species (ROS)-responsive polypeptide micelles
E-mail:,
High levels of intracellular reactive oxygen species (ROS) in cancer cells have emerged as a cancer-specific stimulus that can be utilized for anticancer therapy. Therefore, ROS-responsive drug carriers have attracted considerable attention as cancer-specific drug delivery systems. In this study, an ROS- responsive poly(ethylene glycol)-poly(methionine) [PEG-P(Met)] was synthesized to achieve safe and effective delivery of piperlongumine (PL), a pro-oxidant drug, into cancer cells. Nanoscale core.shell micelles encapsulating hydrophobic PL into a P(Met) core were prepared by self-assembling. The increased ROS levels in cancer cells triggered a hydrophobic-to-hydrophilic transition of the polypeptide, which led to the ROS-responsive disassembly of the micelles and consequently efficient PL release into cancer cells. Compared to free PL, PL-loaded PEG-P(Met) [(PL-PEG-P(Met)] micelles exhibited enhanced apoptosis in MCF-7 human breast cancer cells owing to the efficient intracellular delivery of PL. Notably, the PL-PEG-P(Met) micelles exhibited cancer-specific cytotoxicity in MCF-7 human breast cancer cells owing to a considerable increase in intracellular ROS level in the cells. These results demonstrate that the ROS-responsive PEG-P(Met)-based micelles are safe and effective drug carriers for intracellular delivery of PL, which can provide cancer-selective pro-oxidant therapy.
  1. Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK, Circ. Res., 122, 877 (2018)
  2. Ray PD, Huang BW, Tsuji Y, Cell. Signal., 24, 981 (2012)
  3. Circu ML, Aw TY, Free Radic. Biol. Med., 48, 749 (2010)
  4. Kim GH, Kim JE, Rhie SJ, Yoon S, Exp. Neurobiol., 24, 325 (2015)
  5. Schafer M, Werner S, Pharmacol. Res., 58, 165 (2008)
  6. Costa A, Scholer-Dahirel A, Mechta-Grigoriou F, Semin. Cancer Biol., 25, 23 (2014)
  7. Trachootham D, Alexandre J, Huang P, Nat. Rev. Drug Discov., 8, 579 (2009)
  8. Kim YS, Kim SM, Kang HC, Shim MS, J. Ind. Eng. Chem., 75, 238 (2019)
  9. Xu X, Saw PE, Tao W, Li Y, Ji X, Bhasin S, Liu Y, Ayyash D, Rassmusen J, Huo M, Shi J, Farokhzad OC, Adv. Mater, 29, 170014 (2017)
  10. Saravanakumar G, Kim J, Kim WJ, Adv. Sci., 4, 160012 (2017)
  11. Datta A, Mishra S, Manna K, Saha KD, Mukherjee S, Roy S, ACS Omega, 5, 9714 (2020)
  12. Tripathi SK, Biswal BK, Pharmacol. Res., 156, 104772 (2020)
  13. Choi DG, Venkatesan J, Shim MS, Int. J. Mol. Sci., 20, 3220 (2019)
  14. Liu Y, Chang Y, Yang C, Sang Z, Yang T, Ang W, Ye W, Wei Y, Gong C, Luo Y, Nanoscale, 6, 4325 (2014)
  15. Hong EJ, Lee DY, Kang HC, Kim YC, Shim MS, J. Ind. Eng. Chem., 63, 57 (2018)
  16. Johnson RP, Jeong YI, Choi E, Chung CW, Kang DH, Oh SO, Suh H, Kim I, Adv. Funct. Mater., 22(5), 1058 (2012)
  17. Skoulas D, Christakopoulos P, Stavroulaki D, Santorinaios K, Athanasiou V, Iatrou H, Polymers, 9, 208 (2017)
  18. Xu WG, Ding JX, Chen XS, Biomacromolecules, 18(10), 3291 (2017)
  19. Qiu L. Li Z, Qiao M, Long M, Wang M, Zhang X, Tian C, Chen D, Acta Biomater., 10, 2024 (2014)
  20. Wu H, Zhu L, Torchilin VP, Biomaterials, 34, 1213 (2013)
  21. Moskovitz J, Bar-Noy S, Williams WM, Berlett BS, Stadtman ER, Proc. Natl. Acad. Sci. U.S.A., 98, 12920 (2001)
  22. Moskovitz J, Berlett BS, Poston JM, Stadtman ER, Proc. Natl. Acad. Sci. U.S.A., 94, 9585 (1997)
  23. Yoo J, Rejinold NS, Lee D, Jon S, Kim YC, J. Control. Release, 265, 89 (2017)
  24. Tesauro D, Accardo A, Diaferia C, Milano V, Guillon J, Ronga L, Rossi F, Molecules, 24, 351 (2019)
  25. He C, Zhuang X, Tang Z, Tian H, Chen X, Adv. Healthc. Mater., 1, 48 (2012)
  26. Prabha S, Arya G, Chandra R, Ahmed B, Nimesh S, Artif. Cells Nanomed. Biotechnol., 44, 83 (2016)
  27. Halliwell B, Clement MV, Long LH, Febs Lett., 486, 10 (2000)
  28. Erudaitius D, Mantooth J, Huang A, Soliman J, Doskey CM, Buettner GR, Rodgers VGJ, Free Radic, Biol. Med., 120, 356 (2018)