Journal of Industrial and Engineering Chemistry, Vol.95, 66-72, March, 2021
2D to 3D transformation of gold nanosheets on human adipose-derived α-elastin nanotemplates
E-mail:,
Controlling the morphology and surface properties of gold nanocrystals (AuNCs) can facilitate tailoring their localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) properties for biomedical applications. However, the shape-controlled synthesis of AuNCs for bioapplications remains challenging, given its critical issues, such as the use of toxic reagents and multiple complicated steps. This study demonstrates the facile, biocompatible, and shape-controllable synthesis of AuNCs. This method employs human α-elastin (HαE) self-assemblies as a shape-directing template, reducing agent, and surfactant. Since HαE is a ubiquitous protein present in human tissue, it is non-toxic and non-immunogenic. This method is thus simple and biocompatible. Of particular note, the sheet-type HαE template enables the shape-controlled synthesis of AuNCs.gold nanoparticles, nanosheets, and a rose-flower-like nanostructure (AuRF) stacked with multiple nanosheets. Among the AuNCs, the AuRF exhibits unique optical and electromagnetic properties.an LSPR peak in the near- infrared (NIR) region and characteristic SERS peaks.given the rough surface with sharp edges. To the best of our knowledge, this is the first report on the biosynthesis of AuNCs using human-derived biomolecules such as HαE. The shape-controllable biosynthesis of AuNCs based on HαE may open up possibilities for a wide range of biomedical applications of AuNCs.
Keywords:Gold nanocrystals;Gold nanosheets;Shape-controlled synthesis;Human α-elastin;Surface-enhanced Raman scattering (SERS)
- Cobley CM, Chen J, Cho EC, Wang LV, Xia Y, Chem. Soc. Rev., 40, 44 (2011)
- Huang XQ, Tang SH, Mu XL, Dai Y, Chen GX, Zhou ZY, Ruan FX, Yang ZL, Zheng NF, Nat. Nanotechnol., 6(1), 28 (2011)
- Li JF, et al., Nature, 464, 392 (2010)
- Xia Y, Xiong Y, Lim B, Skrabalak SE, Angew. Chem.-Int. Edit., 48, 60 (2009)
- Hu M, Chen J, Li ZY, Au L, Hartland GV, Li X, Marquez M, Xia Y, Chem. Soc. Rev., 35, 1084 (2006)
- Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan LM, Chem. Soc. Rev., 37, 1783 (2008)
- Yang YC, Huang TK, Chen YL, Mevellec JY, Lefrant S, Lee CY, Chiu HT, J. Phys. Chem. C, 115, 1932 (2011)
- Esenturk EN, Walker AH, J. Raman Spectrosc., 40, 86 (2009)
- Xie J, Zhang Q, Lee JY, Wang DIC, ACS Nano, 2, 2473 (2008)
- Liao HG, Jiang YX, Zhou ZY, Chen SP, Sun SG, Angew. Chem.-Int. Edit., 120, 9240 (2008)
- Aravind P, Metiu H, Surf. Sci., 124, 506 (1983)
- Sun Y, Wiederrecht GP, Small, 3, 1964 (2007)
- Yoon I, Kang T, Choi W, Kim J, Yoo Y, Joo SW, Park QH, Ihee H, Kim B, J. Am. Chem. Soc., 131, 758 (2008)
- Murphy CJ, Gole AM, Hunyadi SE, Stone JW, Sisco PN, Alkilany A, Kinard BE, Hankins P, Chem. Commun., 544 (2008)
- Xie J, Zhang Q, Lee JY, Wang DI, ACS Nano, 2, 2473 (2008)
- von Maltzahn G, Centrone A, Park JH, Ramanathan R, Sailor MJ, Hatton TA, Bhatia SN, Adv. Mater., 21(31), 3175 (2009)
- Han HS, Choi KY, Lee H, Lee M, An JY, Shin S, Kwon S, Lee DS, Park JH, ACS Nano, 10, 10858 (2016)
- Moskovits M, Phys. Chem. Chem. Phys., 15, 5301 (2013)
- Gersten JI, J. Chem. Phys., 72, 5779 (1980)
- Zhao P, Li N, Astruc D, Coord. Chem. Rev., 257, 638 (2013)
- Sajanlal PR, Pradeep T, Nano Res., 2, 306 (2009)
- Nhung TT, Bu Y, Lee SW, J. Cryst. Growth, 373, 132 (2013)
- Boca S, Rugina D, Pintea A, Barbu-Tudoran L, Astilean S, Nanotechnology, 22, 055702 (2010)
- Lemieux V, Adams PH, van Hest JC, Chem. Commun., 46, 3071 (2010)
- Scelsi A, Bochicchio B, Smith A, Saiani A, Pepe A, RSC Adv., 5, 95007 (2015)
- Almine JF, Bax DV, Mithieux SM, Nivison-Smith L, Rnjak J, Waterhouse A, Wise SG, Weiss AS, Chem. Soc. Rev., 39, 3371 (2010)
- Wen Q, Mithieux SM, Weiss AS, Trends Biotechnol., 38, 280 (2020)
- Kim JD, Jung YJ, Woo CH, Choi YC, Choi JS, Cho YW, Colloids Surf. B: Biointerfaces, 149, 122 (2017)
- Choi JS, Yang HJ, Kim BS, Kim JD, Kim JY, Yoo B, Park K, Lee HY, Cho YW, J. Control. Release, 139, 2 (2009)
- Partridge SM, Davis HF, Adair GS, Biochem. J., 61, 11 (1955)
- Mecham RP, Methods, 45, 32 (2008)
- Daamen WF, Hafmans T, Veerkamp JH, Van Kuppevelt TH, Biomaterials, 22, 1997 (2001)
- Maruyama T, Fujimoto Y, Maekawa T, J. Colloid Interface Sci., 447, 254 (2015)
- Zhou M, Lin M, Chen L, Wang Y, Guo X, Peng L, Guo X, Ding W, Chem. Commun., 51, 5116 (2015)
- Qin HL, Wang D, Huang ZL, Wu DM, Zeng ZC, Ren B, Xu K, Jin J, J. Am. Chem. Soc., 135(34), 12544 (2013)
- Wang ZL, J. Phys. Chem. B, 104(6), 1153 (2000)
- Xiao J, Qi L, Nanoscale, 3, 1383 (2011)
- Jin R, Cao Y, Mirkin CA, Kelly K, Schatz GC, Zheng J, Science, 294, 1901 (2001)
- Huang X, El-Sayed MA, J. Adv. Res., 1, 13 (2010)