화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.33, No.1, 65-78, February, 2021
Calculation of molecular weight distribution using extended Cole-Cole model and quadratic mixing rule
E-mail:
We suggest a numerical method to calculate molecular weight distribution from linear viscoelastic data. The calculation method consists of three components: (1) a viscoelastic model of a monodisperse polymer as a function of molecular weight; (2) the mixing rule connecting viscoelastic data of monodisperse and polydisperse polymers through molecular weight distribution; (3) an algorithm which calculates the molecular weight distribution from the chosen mixing rule. Since we cannot measure the relaxation modulus of all monodisperse samples, we need an accurate monodisperse model for any molecular weight. It is known that a dynamic test is more reliable than a relaxation test, while the mixing rule needs relaxation modulus. Hence, we should have a smart numerical method that can convert dynamic data to relaxation modulus with the minimum conversion error. If we use the numerical method, then we have to generate numerical data from the model. Then it takes quite a long time. On the other hand, if we have a monodisperse model with the analytical relaxation spectrum, then calculation time can be reduced dramatically. Since the conversion from relaxation modulus to dynamic modulus suffers from smaller errors than the reverse conversion because of ill-posedness of the interconversion, the analytical conversion can be implemented more quickly at an acceptable level of errors. This paper proposes a new method satisfying the requirements.
  1. Aarts E, Korst J, Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing, Wiley 1989.
  2. Anderssen RS, Mead DW, J. Non-Newton. Fluid Mech., 76(1-3), 299 (1998)
  3. Bae JE, Cho KS, J. Rheol., 59(4), 1081 (2015)
  4. Carrot C, Guillet J, J. Rheol., 41(5), 1203 (1997)
  5. Cho KS, Ahn KH, Lee SJ, J. Polym. Sci. B: Polym. Phys., 42(14), 2724 (2004)
  6. Cho KS, Park GW, J. Rheol., 57(2), 647 (2013)
  7. Cho KS, Kwon MK, Lee JH, Kim SH, Korea-Aust. Rheol. J., 29(4), 249 (2017)
  8. Davies AR, Anderssen RS, J. Non-Newton. Fluid Mech., 73(1-2), 163 (1997)
  9. Des Cloizeaux J, Europhys. Lett., 5, 437 (1988)
  10. Doi M, Edwards SF, The Theory of Polymer Dynamics, Oxford University Press, New York 1986.
  11. Ferry JD, Viscoelastic properties of polymers, John Wiley & Sons 1980.
  12. Friedrich C, Loy RJ, Anderssen RS, Rheol. Acta, 48(2), 151 (2009)
  13. Fuchs K, Friedrich C, Weese J, Macromolecules, 29(18), 5893 (1996)
  14. Fuoss RM, Kirkwood JG, J. Am. Chem. Soc., 63, 385 (1941)
  15. Guzman JD, Schieber JD, Pollard R, Rheol. Acta, 44(4), 342 (2005)
  16. Honerkamp J, Weese J, Macromolecules, 22, 4372 (1989)
  17. Honerkamp J, Weese J, Rheol. Acta, 32, 65 (1993)
  18. Jeon HC, MS Thesis, Kyungpook National University, Korea 2010.
  19. Kim SM, Lee JH, Kim SH, Cho KS, Korea-Aust. Rheol. J., 30(1), 21 (2018)
  20. Kwon MK, Lee JH, Cho KS, Lee SJ, Kim HC, Jeong SW, Lee SG, Korea-Aust. Rheol. J., 31(3), 123 (2019)
  21. Lang C, J. Rheol., 61(5), 947 (2017)
  22. Leonardi F, Allal A, Marin G, J. Rheol., 46(1), 209 (2002)
  23. Maier D, Eckstein A, Friedrich C, Honerkamp J, J. Rheol., 42(5), 1153 (1998)
  24. Marin G, Graessley WW, Rheol. Acta, 16, 527 (1977)
  25. McGrory WJ, Tuminello WH, J. Rheol., 34, 867 (1990)
  26. Mead DW, J. Rheol., 38(6), 1797 (1994)
  27. Montfort JP, Marin G, Monge P, Macromolecules, 19, 1979 (1986)
  28. Nobile MR, Cocchini F, Rheol. Acta, 47(5-6), 509 (2008)
  29. Park JW, Yoon J, Cha J, Lee HS, J. Rheol., 59(5), 1173 (2015)
  30. Pattamaprom C, Larson RG, Sirivat A, Rheol. Acta, 47(7), 689 (2008)
  31. Rubinstein M, Colby RH, Polymer Physics, Oxford University Press, New York 2003.
  32. Schausberger A, Schindlauer G, Janeschitz-Kriegl H, Rheol. Acta, 24, 220 (1985)
  33. Shanbhag S, Macromol. Theor. Simul., 3, 190000 (2019)
  34. Stadler FJ, Bailly C, Rheol. Acta, 48(1), 33 (2009)
  35. Takeh A, Shanbhag S, Appl. Rheol., 23, 1 (2013)
  36. Thimm W, Friedrich C, Marth M, Honerkamp J, J. Rheol., 43(6), 1663 (1999)
  37. Thimm W, Friedrich C, Marth M, Honerkamp J, J. Rheol., 44, 429 (2000)
  38. Tsenoglou C, ACS Polym. Prepr., 28, 185 (1987)
  39. Tuminello WH, Polymer Engineering Science, 26, 1339 (1986)
  40. Van Ruymbeke E, Keunings R, Bailly C, J. Non-Newton. Fluid Mech., 105(2-3), 153 (2002)
  41. Vega JF, Rastogi S, Peters GWM, Meijer HEH, J. Rheol., 48(3), 663 (2004)
  42. Wasserman SH, Graessley WW, J. Rheol., 36, 543 (1992)
  43. Wasserman SH, J. Rheol., 39(3), 601 (1995)
  44. Watanabe H, Prog. Polym. Sci, 24, 1253 (1999)
  45. Wu S, Polym. Eng. Sci., 25, 122 (1985)