화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.1, 55-60, February, 2021
플라즈마 및 직접 기상 불소화에 따른 활성탄소섬유의 초산가스 흡착 특성
Acetic Acid Gas Adsorption Characteristics of Activated Carbon Fiber by Plasma and Direct Gas Fluorination
E-mail:
초록
실내 환경 오염물질인 휘발성 유기화합물(volatile organic compounds)인 초산에 대한 핏치계 활성탄소섬유의 흡착 성능을 향상시키기 위해 불소화를 진행하였다. 불소화에는 플라즈마 불소화와 직접 기상 불소화법을 사용하였으며, 두 가지 방식으로 불소화한 활성탄소섬유의 초산가스 흡착 성능을 고찰하였다. 불소가 도입된 활성탄소섬유의 표면 특성을 알아보기 위하여 X선 광전자 분광법(XPS)을 분석하였고 그 기공특성은 77K 질소 흡착법을 통하여 분석하였다. 초산가스의 흡착 성능은 가스 크로마토그래피를 통하여 측정하였으며, 플라즈마 불소화 된 활성탄소섬유의 파과시간이 790 min으로 650 min인 미처리 활성탄소섬유에 비해 파과시간이 지연되었음을 확인할 수 있으나, 직접 기상 불소화 표면처리한 활성탄소섬유의 파과시간은 390 min으로 오히려 흡착성능이 저해되었다. 이는 플라즈마 불소화 된 활성탄소섬유는 그 비표면적의 변화 없이, 표면에 도입된 불소 관능기가 초산가스(CH3COOH)와 정전기적 인력으로 흡착성능이 증가하였다. 반면, 직접 기상 불소화 된 활성탄소섬유는 그 비표면적이 55%까지 크게 감소하여 초산가스에 대한 물리적 흡착 효과가 현저히 감소하였다.
Fluorination was carried out to improve the adsorption performance of pitch-based activated carbon fibers (ACFs) onto acetic acid. Both plasma and direct gas fluorination were used for fluorination, and the acetic acid gas adsorption performance of fluorinated ACFs was investigated. X-ray photoelectron spectroscopy (XPS) is analyzed to determine the surface characteristics of ACFs, and the pore characteristics were analyzed by 77 K nitrogen adsorption. An adsorption performance was measured through gas chromatography, and it was confirmed that the breakthrough time of plasma fluorinated sample was 790 min and that the breakthrough time was delayed compared to that of using untreated one of 650 min. However, the breakthrough time of direct gas fluorinated sample was 390 min, indicating that the adsorption performance was inhibited. The plasma fluorinated ACFs showed an increase in the adsorption performance due to an electrostatic attraction between the acetic acid gas (CH3COOH) with the fluorine group introduced to the surface without changing its specific surface area. On the other hand, the specific surface area of the direct gas fluorinated ACFs decreased significantly up to 55%, and the physical adsorption effect on the acetic acid gas also reduced.
  1. Yue X, Ma NL, Sonne C, Guan R, Lam SS, et al., J. Hazard. Mater, 124138 (2020).
  2. Shin SK, Kang JH, Song JH, J. Korean Soc. Environ. Eng., 32, 936 (2010)
  3. Zhu L, Shen D, Luo KH, J. Hazard. Mater., 389, 122102 (2020)
  4. Song EJ, Kim MJ, Han JI, Choi YJ, Lee YS, Appl. Chem. Eng., 30(2), 160 (2019)
  5. Lim HS, Kim MJ, Kong EY, Jeong JD, Lee YS, Appl. Chem. Eng., 29(3), 312 (2018)
  6. Liu YX, Mallouk K, Emamipour H, Rood MJ, Liu XM, Yan ZF, Chem. Eng. J., 360, 1011 (2019)
  7. Kim MJ, Jung MJ, Kim MI, Choi SS, Lee YS, Appl. Chem. Eng., 26(5), 587 (2015)
  8. Tressaud A, Durand E, Labrugere C, J. Fluor. Chem., 125, 1639 (2004)
  9. Feng W, Long P, Feng Y, Li Y, Adv. Sci., 3, 150041 (2016)
  10. Sugiyama H, Hattori Y, Chem. Phys. Lett., 758, 137909 (2020)
  11. Choi YJ, Lee KM, Han JI, Lee YS, Carbon Lett., 29, 401 (2019)
  12. Park MS, Kim KH, Lee YS, J. Ind. Eng. Chem., 37, 22 (2016)
  13. Sato Y, Kume T, Hagiwara R, Ito Y, Carbon, 41, 351 (2003)
  14. Blanksby SJ, Ellison GB, Accounts Chem. Res., 36, 255 (2003)
  15. Jung MJ, Kim JW, Im JS, Park SJ, Lee YS, J. Ind. Eng. Chem., 15(3), 410 (2009)
  16. Kim MJ, Jung MJ, Choi SS, Lee YS, Appl. Chem. Eng., 26(4), 432 (2015)
  17. Song EJ, Masters dissertation, Chungnam National University, Daejeon, Korea (2019).
  18. Tressaud A, Moguet F, Flandrois S, Chambon M, Guimon C, Nanse G, Papirer E, Gupta V, Bahl OP, J. Phys. Chem. Solids, 57, 745 (1996)
  19. Im JS, Lee SK, In SJ, Lee YS, J. Anal. Appl. Pyrolysis, 89, 225 (2010)
  20. Kim KH, Kang DH, Kim MJ, Lee YS, Desalination, 457, 1 (2019)
  21. Choi YJ, Kim JH, Lee KB, Lee YS, Im JS, J. Ind. Eng. Chem., 80, 152 (2019)
  22. Jo H, Kim KH, Jung MJ, Park JH, Lee YS, Appl. Surf. Sci., 409, 117 (2017)
  23. Park MS, Kim KH, Kim MJ, Lee YS, Colloids Surf. A: Physicochem. Eng. Asp., 490, 104 (2016)
  24. Park MS, Lee YS, J. Fluor. Chem., 182, 91 (2016)
  25. Kim JH, Kim DY, Jeong E, Lee YS, Appl. Surf. Sci., 360, 1009 (2016)
  26. Im JS, Bae TS, Lee SK, Lee SH, Jeong E, Kang PH, Lee YS, Mater. Res. Bull., 45(11), 1641 (2010)
  27. Chuang C, Chiang P, Chang E, Chemosphere, 53, 17 (2003)
  28. Zhang XY, Gao B, Creamer AE, Cao CC, Li YC, J. Hazard. Mater., 338, 102 (2017)
  29. Kujawa J, Al-Gharabli S, Kujawski W, Knozowska K, ACS Appl. Mater. Interfaces, 9, 6571 (2017)
  30. Bismarck A, Tahhan R, Springer J, Schulz A, Klapotke TM, Zell H, Michaeli W, J. Fluorine Chem., 84, 127 (1997)
  31. Dollimore D, Spooner P, Turner A, Surf. Technol., 4, 121 (1976)
  32. El-Merraoui M, Aoshima M, Kaneko K, Langmuir, 16(9), 4300 (2000)
  33. Lim HS, Masters dissertation, Hoseo University, Asan, Korea (2016).
  34. Woo YC, Chen Y, Tijing LD, Phuntsho S, He T, Choi JS, Kim SH, Shon HK, J. Membr. Sci., 529, 234 (2017)