Journal of Industrial and Engineering Chemistry, Vol.94, 317-325, February, 2021
Dispersion behavior of various single metals on carbonaceous coal supports and their reactivity in methanol steam reforming
E-mail:
Coal as catalytic support is advantageous in many respects. The pore structure and surface composition are controllable, and the high thermal conductivity can increase the thermal efficiency of the reactor. It is stable in acidic or basic media and it is easy to recycle the catalyst after use. In this study, six different coals were evaluated as catalytic supports based on their ability to disperse of the metal and their catalytic performance. Nickel particles with an average diameter of <11 nm are typically dispersed on low-rank coals (LRCs). The nickel catalysts supported on LRCs show 60-70% hydrogen yield for methanol steam reforming (MSR), and one of them maintained the activity during 1000 h continuous run, confirming the stability as catalyst support. Most of the well-known catalytic metals such as Pt, Pd, Rh, Ru, Mn, Co, Fe, Zn, Bi, Mo, K, Cu, Ce, Mg, Ga, and La, are dispersed on LRC (Eco coal) support uniformly with an average size of <10 nm. Much improved dispersion of the metals on LRC confirms the chance of having improved catalytic activity compared to the conventional carbon supports.
- https://www.worldcoal.org/coal.
- Mastral AM, Mayoral MC, Palacios JM, Energy Fuels, 8(1), 94 (1994)
- Ye R, Xiang C, Lin J, Peng Z, Huang K, Yan Z, Cook NP, Samuel ELG, Hwang C, Ruan G, Ceriotti G, Raji A, Marti A, J. Tour, Nat. Comm., 1 (2013).
- Tian Y, Zhang Y, Wang B, Ji W, Zhang Y, Xie K, Carbon, 42, 2597 (2004)
- Yuliani G, Garnier G, Chaffee A, J. Water Process Eng., 15, 43 (2017)
- Blanco H, Faaij A, Renew. Sust. Energ. Rev., 81, 1049 (2018)
- Cai F, Ibrahim J, Fu Y, Kong W, Zhang J, Sun Y, Appl. Catal. B: Environ., 264, 118500 (2020)
- Xiao XB, Cao JP, Meng XL, Le DD, Li LY, Ogawa Y, Sato K, Takarada T, Fuel, 103, 135 (2013)
- Kim S, Chun D, Rhim Y, Lim J, Kim S, Choi H, Lee S, Yoo J, Int. J. Hydrog. Energy, 40(35), 11855 (2015)
- Ruhswurmova N, Kim S, Yoo J, Chun D, Rhim Y, Lim J, Kim S, Choi H, Lee S, Int. J. Hydrog. Energy, 43(33), 15880 (2018)
- Li LY, Takarada T, Biomass Bioenerg., 56, 456 (2013)
- Li LY, Morishita K, Mogi H, Yamasaki K, Takarada T, Fuel Process. Technol., 91(8), 889 (2010)
- Serp P, Figueiredo J, Carbon materials for catalysis, John Wiley & Son, Inc., pp.131 2009.
- Kim S, Yoo J, Chun D, Lee S, Rhee YW, Clean Technol., 19(3), 333 (2013)
- Li N, Ma X, Zha Q, Kim K, Chen Y, Song C, Carbon, 49, 5002 (2011)
- Schafer H, Fuel, 49, 197 (1970)
- Auer E, Freund A, Pietsch J, Tacke T, Appl. Catal. A: Gen., 173(2), 259 (1998)
- Chandra S, Kumar A, Tomar P, J. Saudi Chem. Soc., 15, 437 (2014)
- Auer E, Freund A, Pietsch J, Tacke T, Appl. Catal. A: Gen., 173(2), 259 (1998)
- Mathews JP, Chaffee AL, Fuel, 96(1), 1 (2012)
- Li CZ, Fuel, 86(12-13), 1664 (2007)
- Geng W, Nakajima T, Takanashi H, Ohki A, Fuel, 88(1), 139 (2009)
- Van Krevelen D, Elsevier Science Publishers, Amsterdam (Netherlands), pp.167 1993.
- Nogueira F, Assaf P, Carvalho H, Assaf E, Appl. Catal. B: Environ., 160-161, 188 (2014)
- Mile B, Stirling D, Zammitt M, J. Mol. Catal., 62, 179 (1990)
- Brown R, Cooper ME, Whan DA, Appl. Catal., 3, 177 (1982)
- Diskin AM, Cunningham RH, Ormerod RMZ, Catal. Today, 46(2-3), 147 (1998)
- van Hooff J, Roelofsen J, Stud. Surf. Sci. Catal., 58, 241 (1991)
- Nam KB, Yeo JH, Hong SC, Ind. Eng. Chem. Res., 58(41), 18930 (2019)
- Rodriguez-Reinoso F, Carbon, 36, 159 (1998)
- Ouzzine M, Cifredo GA, Gatica JM, Harti S, Chafik T, Vidal H, Appl. Catal. A: Gen., 342(1-2), 150 (2008)
- Zawadzki J, Wisniewski M, Skowronska K, Carbon, 41, 235 (2003)
- Pawelec B, Mariscal R, Fierro JLG, Greenwood A, Vasudevan PT, Appl. Catal. A, 206(2), 295 (2001)
- Twigg M, Wolfe Publishing Ltd., pp.225 1989.
- Sa S, Silva H, Brandao L, Sousa JM, Mendes A, Appl. Catal. B: Environ., 99(1-2), 43 (2010)
- Coloma F, Sepulvedaescribano A, Fierro JL, Rodriguezreinoso F, Appl. Catal. A: Gen., 136(2), 231 (1996)
- Xu DL, Yang L, Ding K, Zhang YM, Gao WR, Huang Y, Sun HQ, Hu X, Syed-Hassan SSA, Zhang S, Zhang H, Energy Fuels, 34(2), 1219 (2020)
- Sehested J, Catal. Today, 15, 103 (2006)
- McCarty J, Wise H, J. Catal., 57, 406 (1979)
- Forzatti P, Lietti L, Catal. Today, 52(2-3), 165 (1999)
- Priscilla L, Kim S, Yoo J, Choi H, Rhim Y, Lim J, Kim S, Chun D, Lee S, Korean Hydrogen New Energy Soc., 29, 559 (2018)
- Rivero-Mendoza D, Stanley J, Scott J, Aguey-Zinsou K, Catalysts, 6, 170 (2016)
- Fuente AM, Pulgar G, Gonzalez F, Pesquera C, Blanco C, Appl. Catal. A: Gen., 208(1-2), 35 (2001)
- Upare PP, Lee JM, Hwang DW, Halligudi SB, Hwang YK, Chang JS, J. Ind. Eng. Chem., 17(2), 287 (2011)
- Serp P, Figueiredo J, Carbon materials for catalysis, John Wiley & Son, Inc., pp.177 2009.
- Bahome MC, Jewell LL, Hildebrandt D, Glasser D, Coville NJ, Appl. Catal. A: Gen., 287(1), 60 (2005)
- Farag H, Whitehurst DD, Sakanishi K, Mochida I, Catal. Today, 50(1), 9 (1999)
- Stuber F, Font J, Fortuny A, Bengoa C, Eftaxias A, Fabregat A, Topics Catal., 33, 3 (2005)
- Wu JCS, Lin ZA, Tsai FM, Pan JW, Catal. Today, 63(2-4), 419 (2000)
- Yoshikawa M, Yasutake A, Mochida I, Appl. Catal. A: Gen., 173(2), 239 (1998)
- Buitrago R, Ruiz-Martinez J, Silvestre-Albero J, Sepulveda-Escribano A, Rodriguez-Reinoso F, Catal. Today, 180(1), 19 (2012)
- Zhang GJ, Su AT, Du YN, Qu JW, Xu Y, J. Colloid Interface Sci., 433, 149 (2014)