Journal of Industrial and Engineering Chemistry, Vol.94, 233-239, February, 2021
Facilitation of the thermochemical mechanism in NiO-based resistive switching memories via tip-enhanced electric fields
Transition metal oxides have attracted considerable attention as a switching material for resistive random access memory (RRAM) based on the thermochemical mechanism (TCM). However, the heat energy required for resistance switching is applied to the entire area of the RRAM without position selectivity, causing random growth of conductive filaments (CFs) and degrading device performance. This study showed that structured electrodes can promote the TCM in nickel oxide (NiO)-based RRAM by enhancing the electric field within the switching material and controlling Joule heat generation locally. Pyramid-structured electrodes with an extremely sharp tip prepared by the template-stripping method achieve an electric field in the tip region that is ∼5 times larger than that of conventional planar electrodes. The tip-enhanced electric field can induce a local temperature rise, which facilitates the TCM for nucleation and CF growth. The resulting RRAMs exhibit low and reliable forming, SET and RESET voltages (1.96 ± 0.14 V, 1.44 ± 0.12 V, and 0.64 ± 0.05 V, respectively). Moreover, their retention time and resistance ratio (RHRS/RLRS) are greatly improved, by 10 and 102 times, respectively, compared to planar devices. This approach can achieve position selectivity in TCM-based resistance switching, and could lead to the development of high-performance RRAM.
Keywords:Resistive memory;Thermochemical mechanism;Joule heating;Position selectivity;Tip-enhanced electric field;Pyramid-structured electrode
- Waser R, Aono M, Nat. Mater., 6(11), 833 (2007)
- Al-Haddad A, Wang C, Qi H, Grote F, Wen L, Bernhard J, Vellacheri R, Tarish S, Nabi G, Kaiser U, ACS Appl. Mater. Interfaces, 8, 23348 (2016)
- Kim KH, Jo SH, Gaba S, Lu W, Appl. Phys. Lett., 96, 053106 (2010)
- Sun B, Zhou G, Guo T, Zhou YN, Wu YA, Nano Energy, 104938 (2020).
- Ranjan S, Sun B, Zhou G, Wu YA, Wei L, Zhou NY, ACS Appl. Nano Mater., 3, 5045 (2020)
- Shang J, Liu G, Yang HL, Zhu XJ, Chen XX, Tan HW, Hu BL, Pan L, Xue WH, Li RW, Adv. Funct. Mater., 24(15), 2171 (2014)
- Lee MH, Hwang CS, Nanoscale, 3, 490 (2011)
- Wang XF, Tian H, Zhao HM, Zhang TY, Mao WQ, Qiao YC, Pang Y, Li YX, Yang Y, Ren TL, Small, 14, 170252 (2018)
- Chang KC, Tsai TM, Chang TC, Syu YE, Chuang SL, Li CH, Gan DS, Sze SM, Electrochem. Solid-State Lett., 15, H65 (2011)
- Jang J, Choi HH, Paik SH, Kim JK, Chung S, Park JH, Adv. Electron. Mater, 4, 180035 (2018)
- Zhou G, Sun B, Ren Z, Wang L, Xu C, Wu B, Li P, Yao Y, Duan S, Chem. Commun., 55, 9915 (2019)
- Zhou G, Yang X, Xiao L, Sun B, Zhou A, Appl. Phys. Lett., 114, 163506 (2019)
- Yang JJ, Miao F, Pickett MD, Ohlberg DA, Stewart DR, Lau CN, Williams RS, Nanotechnology, 20, 215201 (2009)
- Kwon DH, Kim KM, Jang JH, Jeon JM, Lee MH, Kim GH, Li XS, Park GS, Lee B, Han S, Kim M, Hwang CS, Nat. Nanotechnol., 5(2), 148 (2010)
- Waser R, Dittmann R, Staikov G, Szot K, Adv. Mater., 21(25-26), 2632 (2009)
- You BK, Kim JM, Joe DJ, Yang K, Shin Y, Jung YS, Lee KJ, ACS Nano, 10, 9478 (2016)
- Sun Y, Song C, Yin J, Chen X, Wang Q, Zeng F, Pan F, ACS Appl. Mater. Interfaces, 9, 34064 (2017)
- Huang YC, Tsai WL, Chou CH, Wan CY, Hsiao C, Cheng HC, IEEE Electron Device Lett., 34, 1244 (2013)
- Shin KY, Kim Y, Antolinez FV, Ha JS, Lee SS, Park JH, Adv. Electron. Mater., 2, 160023 (2016)
- Kim Y, Choi H, Park HS, Kang MS, Shin KY, Lee SS, Park JH, ACS Appl. Mater. Interfaces, 9, 38643 (2017)
- Choi HH, Kim M, Jang J, Lee KH, Jho JY, Park JH, Appl. Mater. Today, 20, 100746 (2020)
- Kim KM, Jeong DS, Hwang CS, Nanotechnology, 22, 254002 (2011)
- Nagpal P, Lindquist NC, Oh SH, Norris DJ, Science, 325, 594 (2009)
- Park JH, Nagpal P, McPeak KM, Lindquist NC, Oh SH, Norris DJ, ACS Appl. Mater. Interfaces, 5, 9701 (2013)
- Wong HSP, Lee HY, Yu S, Chen YS, Wu Y, Chen PS, Lee B, Chen FT, Tsai MJ, Proc. IEEE, 100, 1951 (2012)
- Bean KE, IEEE Trans. Electron Devices, 25, 1185 (1978)
- Kalantarian A, Bersuker G, Gilmer D, Veksler D, Butcher B, Padovani A, Pirrotta O, Larcher L, Geer R, Nishi Y, IEEE International Reliability Physics Symposium, p.6C.41 (2012).
- Chen G, et al., International Symposium on VLSI Technology, Systems and Application, p.1 (2019).
- Xu X, Lv H, Liu H, Gong T, Wang G, Zhang M, Li Y, Liu Q, Long S, Liu M, IEEE Electron Device Lett., 36, 129 (2014)
- Lee MJ, Han S, Jeon SH, Park BH, Kang BS, Ahn SE, Kim KH, Lee CB, Kim CJ, Yoo IK, Nano Lett., 9, 1476 (2009)
- Scott JC, Malliaras GG, Chem. Phys. Lett., 299, 115 (1999)
- Park S, Ahn HS, Lee CK, Kim H, Jin H, Lee HS, Seo S, Yu J, Han S, Phys. Rev. B, 77, 134103 (2008)
- Park GS, Li XS, Kim DC, Jung RJ, Lee MJ, Seo S, Appl. Phys. Lett., 91, 222103 (2007)
- You BK, Park WI, Kim JM, Park KI, Seo HK, Lee JY, Jung YS, Lee KJ, ACS Nano, 8, 9492 (2014)
- Osburn C, Vest R, J. Phys. Chem. Solids, 32, 1343 (1971)
- Ielmini D, Bruchhaus R, Waser R, Phase Transitions, 84, 570 (2011)
- Seo S, Lee M, Seo D, Jeoung E, Suh DS, Joung Y, Yoo I, Hwang I, Kim S, Syun I, Appl. Phys. Lett., 85, 5655 (2004)
- Seo S, Lee M, Seo D, Choi S, Suh DS, Joung Y, Yoo I, Byun I, Hwang I, Kim S, Appl. Phys. Lett., 86, 093509 (2005)