화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.94, 127-133, February, 2021
Bubble formation in a step-emulsification microdevice: hydrodynamic effects in the cavity
E-mail:
This study focuses on the generation of bubbles in a step-emulsification microdevice via a two-angle photography method. It's found that the bubble generation mechanism is controlled by the interfacial tension, below a critical capillary number; while controlled by viscous force, inertial force and the disturbance induced by the bubble swarm, above the critical capillary number. From the two-angle photography method, a model is established for predicting the bubble size, by taking into account of the dynamic contact angle between gas-liquid interface and wall, and the hydrodynamic feedback of the cavity on bubble formation via the quantification of resistance by the volume fraction of gas in the cavity.
  1. Hashimoto M, Garstecki P, Whitesides GM, Small, 3(10), 1792 (2007)
  2. Yao C, Zhao Y, Zheng J, Zhang Q, Chen G, AIChE J., 66(5) (2020)
  3. Hashimoto M, Whitesides GM, Small, 6(9), 1051 (2010)
  4. Nauman K, Isao K, Marcos AN, Crit. Rev. Food Sci. Nutr., 58(14), 2364 (2018)
  5. Whitesides GM, Nature, 442(7101), 368 (2006)
  6. Meng J, Wu G, Wu X, Cheng H, Xu Z, Chen S, Adv Sci, 7(1), 190193 (2020)
  7. Bac S, Avci AK, Chem. Eng. J., 377, 121004 (2019)
  8. Link DR, Anna SL, Weitz DA, Stone HA, Phys. Rev. Lett., 92(5), 054503 (2004)
  9. Hashimoto M, Shevkoplyas SS, Zasonska B, Szymborski T, Garstecki P, Whitesides GM, Small, 4(10), 1795 (2008)
  10. Wang XD, Zhu CY, Wu YN, Fu TT, Ma YG, Chem. Eng. Sci., 132, 128 (2015)
  11. Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM, Lab Chip, 6, 437 (2006)
  12. Yamawaki B, Mori R, Tsukagoshi K, Tsuchiya K, Yamashita K, Murata M, Anal. Sci., 35(3), 249 (2019)
  13. Lei L, Zhang H, Bergstrom DJ, Anthony T, Song KY, Zhang W, Micromech. Microeng., 30(5) (2020)
  14. Sugiura S, Nakajima M, Tong JH, Nabetani H, Seki M, J. Colloid Interface Sci., 227(1), 95 (2000)
  15. Sugiura S, Nakajima M, Iwamoto S, Seki M, Langmuir, 17(18), 5562 (2001)
  16. Kawakatsu T, Kikuchi Y, Nakajima M, J. Am. Oil Chem. Soc., 74(3), 317 (1997)
  17. Yasuno M, Sugiura S, Iwamoto S, Nakajima M, Shono A, AIChE J., 50(12), 3227 (2004)
  18. Zhang Z, Jiang S, Zhu C, Ma Y, Fu T, Chem. Eng. Sci., 224, 115815 (2020)
  19. Mi S, Fu T, Zhu C, Jiang S, Ma Y, AIChE J., 66(1), e16777 (2020)
  20. Klooster S, Sahin S, Schroen K, Sci Rep, 9, 7820 (2019)
  21. Sugiura S, Nakajima M, Seki M, Langmuir, 18(15), 5708 (2002)
  22. Sugiura S, Nakajima M, Kumazawa N, Iwamoto S, Seki M, J. Phys. Chem. B, 106(36), 9405 (2002)
  23. Wang M, Kong C, Liang Q, Zhao J, Wen M, Xu Z, Ruan X, RSC Adv., 8(58), 33042 (2018)
  24. Eggersdorfer ML, Seybold H, Ofner A, Weitz DA, Studart AR, Proc. Natl. Acad. Sci. U.S.A., 115(38), 9478 (2018)
  25. Stoffel M, Wahl S, Lorenceau E, Hohler R, Mercier B, Angelescu DE, Phys. Rev. Lett., 198302 (2012).
  26. van Dijke KC, Schroen KCPGH, Boom RM, Langmuir, 24(18), 10107 (2008)
  27. Utada AS, Fernandez-Nieves A, Stone HA, Weitz DA, Phys. Rev. Lett., 99(9), 094502 (2007)
  28. Ma YD, Microfluid. Nanofluid., 12(1-4), 671 (2011)
  29. Belloul M, Engl W, Colin A, Panizza P, Ajdari A, Phys. Rev. Lett., 102(19), 194502 (2009)
  30. Raven JP, Marmottant P, Phys. Rev. Lett., 102, 084501 (2009)
  31. Fuerstman MJ, Lai A, Thurlow ME, Shevkoplyas SS, Stone HA, Whitesides GM, Lab Chip, 7, 1479 (2007)