화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.31, No.1, 8-15, January, 2021
Anti-Fogging, Photocatalytic and Self-Cleaning Properties of TiO2-Transparent Coating
E-mail:
Transparent, photocatalytic, and self-cleaning TiO2 thin film is developed by TiO2 sol-gel coating on glass and polycarbonate (PC) substrates. Acetyl acetone (AcAc) suppresses the precipitation of TiO2 by forming a yellowish (complex) transparent sol-gel. XPS analysis confirms the presence of Ti2p and O1s in the thin films on glass and PC substrates. The TiO2-sol is prepared by stabilizing titanium (IV) isopropoxide (TTIP) with diethylamine and methyl alcohol. The addition of AcAcsilane coupling solution to the TiO2-sol instantaneously turns to yellowish color owing to the complexing of titanium with AcAc. The AcAc solution substantially improves the photocatalytic property of the TiO2 coating layer in MB solutions. The coated TiO2 film exhibits super hydrophilicity without and with light irradiation. The TiO2 thin film stabilized by adding 8.7 wt% AcAc shows the highest photo-degradation for methylene blue (MB) solution under UV light irradiation. Also, the optimum photocatalytic activity is obtained for the 8.7 wt% AcAc-stabilized TiO2 coating layer calcined at 450 °C. The thin-films on glass exhibit fast self-cleaning from oleic acid contamination within 45 min of UV-light irradiation. The appropriate curing time at 140 °C improves the anti-fogging and thermal stability of the TiO2 film coated on PC substrate. The watermark-free PC substrate is particularly beneficial to combat fogging problems of transparent substrates.
  1. Hu X, Yu Y, Wang Y, Wang Y, Zhou J, Song L, Mater. Lett., 182, 372 (2016)
  2. Yaghoubi H, Taghavinia N, Alamdari EK, Surf. Coat. Technol., 204, 1562 (2010)
  3. Yadav HM, Kim JS, J. Mater. Sci.: Mater. Electron., 27, 10082 (2016)
  4. Hakki HK, Allahyari S, Rahemi N, Tasbihi M, Mater. Sci. Semicond. Process, 85, 24 (2018)
  5. Tricoli A, Righettoni M, Pratsinis SE, Nanotech Conf. Expo 2009, Vol 3, Tech. Proc., 3, 192 (2009).
  6. Sabbah H, Mater. Express, 3, 171 (2013)
  7. Fateh R, Ismail AA, Dillert R, Bahnemann DW, J. Phys. Chem. C, 115, 10405 (2011)
  8. Zubkov T, Stahl D, Thompson TL, Panayotov D, Diwald O, Yates JT, J. Phys. Chem. B, 109(32), 15454 (2005)
  9. Okunaka S, Tokudome H, Hitomi Y, Abe R, J. Mater. Chem. A, 3, 1688 (2015)
  10. Morales-Torres S, Pastrana-Martinez LM, Figueiredo JL, Faria JL, Silva AMT, Environ. Sci. Pollut. Res., 19, 3676 (2012)
  11. Han C, Likodimos V, Khan JA, Nadagouda MN, Andersen J, Falaras P, Lombardi PR, Dionysiou DD, Environ. Sci. Pollut. Res., 21, 11781 (2014)
  12. Koli VB, Delekar SD, Pawar SH, J. Mater. Sci. -Mater. Med., 27, 177 (2016)
  13. Kabir II, Sheppard LR, Shamiri R, Koshy P, Liu R, Joe W, Le A, Lu X, Chen WF, Sorrell CC, J. Mater. Sci., 55, 3774 (2020)
  14. Oshani F, Marandi R, Rasouli S, Farhoud MK, Appl. Surf. Sci., 311, 308 (2014)
  15. Dulian P, Nachit W, Jaglarz J, Zieba P, Kanak J, Zukowski W, Opt. Mater., 90, 264 (2019)
  16. Chevallier P, Turgeon S, Sarra-Bournet C, Turcotte R, Laroche G, ACS Appl. Mater. Interfaces, 3, 751 (2011)
  17. Park S, Park S, Jang DH, Lee HS, Park CH, Mater. Lett., 180, 81 (2016)
  18. Radha KV, Regupathi I, Arunagiri A, Murugesan T, Process Biochem., 40(10), 3337 (2005)
  19. Kartini I, Lu GQ, Indonesian J. Chem., 5, 15 (2005)
  20. Spiridonova J, Katerski A, Danilson M, Krichevskaya M, Krunks M, Acik IO, Molecules, 24, 4326 (2019)
  21. Nishimoto S, Tomoishi S, Kameshima Y, Fujii E, Miyake M, J. Ceram. Soc. Jpn., 122, 513 (2014)
  22. Koli VB, Mavengere S, Kim JS, Appl. Surf. Sci., 491, 60 (2019)