화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.93, 237-244, January, 2021
A Systematic Study of the Interactions in the Top Electrode/Capping Layer/Thin Film Encapsulation of Transparent OLEDs
E-mail:
Development of flexible transparent organic light-emitting devices (TOLEDs) still requires a number of advancements in transparent conducting electrodes with low reflection and absorption, a capping layer (CL) acting as refractive index-matching, and thin film encapsulation (TFE) with high water vapor barrier properties, among others. While substantial research has been reported on isolated examples in each area, there has been no detailed and systemic research related to the overall interactions of top electrodes, CLs, TFE, and their interfaces. In this work, TOLEDs have been fabricated with a thin Ag top electrode and CLs of different surface energy, which was encapsulated with high water vapor barrier property (1.35Ⅹ10-4 gm-2day-1 at 37.8 °C and 100 % RH). The encapsulation barrier was comprised of 50-nm-thick Al2O3 thin films deposited using a low-temperature (95 °C) ALD process. Once prepared, the TOLEDs were studied using a variety of techniques to determine the enhancements to electrical, optical, and water vapor barrier properties. Although the nature of the CL materials affects the film formation on the top electrode layer, there is no impact on the properties of the Al2O3 thin films. In the formation process of the Al2O3 TFE, the device incorporating a tris(8-hydroxyquinoline)aluminum (Alq3) CL showed superior performance, whereas device performance degredation was noted with the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile (HATCN) CL. The lack of degradation in the Alq3 CL device during ALD processing is attributed to the high thermal stability of Alq3, which exhibits a high glass transition temperature of 175 °C. However, in the HATCN CL device, it is expected that formation of aromatic radical anions [HAT(CN)6]ㆍ- and dianions [HAT(CN)6]2-, and/or band bending of fermi energy of the HATCN at the interface of the thin Ag layer, results in the observed degraded performance.
  1. Pyo B, Joo CW, Kim HS, Kwon B, Lee J, Lee J, Suh MC, Nanoscale, 8, 8575 (2016)
  2. Zhang YB, Ou QD, Li YQ, Chen JD, Zhao XD, Wei J, Xie ZZ, Tang JX, Opt. Express, 25, 15662 (2017)
  3. Kim M, Joo CW, Kim JH, Choi W, Lee J, Lee D, Cho H, Lee H, Park S, Cho NS, Cho H, Lee CW, Jeon DY, Kwon BH, ACS Photonics, 5, 3389 (2018)
  4. Heo SW, Lee EJ, Han YW, Lee YS, Lee WJ, Choa SH, Kim YS, Moon DK, J. Ind. Eng. Chem., 53, 68 (2017)
  5. Meyer J, Winkler T, Hamwi S, Schmale S, Johannes HH, Weimann T, Hinze P, Kowlasky W, Riedl T, Adv. Mater., 20(20), 3839 (2008)
  6. Lee JH, Lee S, Kim JB, Jang J, Kim JJ, J. Mater. Chem., 22, 15262 (2012)
  7. Park CH, Lee HJ, Hwang JH, Kim KN, Shim YS, Jung SG, Park CH, Park YW, Ju BK, ACS Appl. Mater. Interfaces, 7, 6047 (2015)
  8. Chung J, Cho H, Koh TW, Lee J, Kim E, Lee J, Lee JI, Yoo S, Opt. Express, 23, 27306 (2015)
  9. Kim GW, Lampande R, Boizot J, Kim GH, Choe DC, Kwon JH, Nanoscale, 6, 3810 (2014)
  10. Kwon SK, Lee EH, Kim KS, Choi HC, Park MJ, Kim SK, Pode R, Kwon JH, Opt. Express, 25, 29906 (2017)
  11. Hung LS, Tang CW, Mason MG, Raychaudhuri P, Madathil J, Appl. Phys. Lett., 78, 544 (2001)
  12. Huh JW, Lee JW, Cho D, Lee J, Chu HY, IEEE Photonics J., 4, 39 (2012)
  13. Park SR, Suh MC, Opt. Express, 26, 4979 (2018)
  14. Jang SS, Moon JH, Cho HS, Joo CW, Lee JH, Shin JW, Park SK, Cho NS, Yang SY, Kwon BH, J. Ind. Eng. Chem., 80, 490 (2019)
  15. van de Weijer P, Bouten PCP, Unnikrishnan S, Akkerman HB, Michels JJ, van Mol TMB, Org. Electron., 44, 94 (2017)
  16. Steinmann V, Moroa L, J. Mater. Res., 33, 1925 (2018)
  17. Kim LH, Kim K, Park S, Jeong YJ, Kim H, Chung DS, Kim SH, Park CE, ACS Appl. Mater. Interfaces, 6, 6731 (2014)
  18. Wang L, Ruan C, Li M, Zou J, Tao H, Peng J, Xu M, J. Mater. Chem. C, 5, 4017 (2017)
  19. Lim JT, Lee H, Cho H, Kwon BH, Cho NS, Lee BK, Park J, Kim J, et al., Sci. Rep., 5, 17748 (2015)
  20. Jen SH, Bertrand JA, George SM, J. Appl. Phys., 109, 084305 (2011)
  21. Jen SH, McLean RS, Carcia PM, George SM, ACS Appl. Mater. Interfaces, 5, 1165 (2013)
  22. Shahnawaz, Swayamprabha SS, Nagar MR, Yadav RAK, Gull S, Dubey DK, Jou JH, J. Mater. Chem. C, 7, 7144 (2019)
  23. Frank P, Djuric T, Koini M, Salzmann I, Rieger R, Mullen K, Resel R, Koch N, Winkler A, J. Phys. Chem. C, 114, 6650 (2010)
  24. Kim HJ, Lee JH, Kim JW, Lee S, Jang J, Lee HH, Kim JJ, J. Mater. Chem. C, 1, 1260 (2013)
  25. Shao Y, Qiu Y, Hu XM, Hong XY, Chem. Lett., 29(9), 1068 (2000)
  26. Li M, Gao DY, Li S, Zhou ZW, Zou JH, Tao H, Wang L, Xu M, Peng JB, RSC Adv., 5, 104613 (2015)
  27. Franke S, Baumkotter M, Monka C, Raabe S, Caspary R, Johannes HH, Kowalsky W, Beck S, Pucci A, Gargouri H, J. Vac. Sci. Technol. A, 35, 01B117 (2016)
  28. Kaspar TC, Droubay T, Chambers SA, Bagus PS, J. Phys. Chem. C, 114, 21562 (2010)
  29. Song W, So SK, Moulder J, Qiu Y, Zhu Y, Cao L, Surf. Interface Anal., 32, 70 (2001)
  30. Kim SK, Lampande R, Kwon JH, ACS Photon., 6, 2957 (2019)
  31. Aragay G, Frontera A, Lloveras V, Vidal-Gancedo J, Ballester P, J. Am. Chem. Soc., 135(7), 2620 (2013)