Journal of Industrial and Engineering Chemistry, Vol.93, 176-185, January, 2021
Wide interlayer spacing ammonium vanadate (NH4)0.37V2O5.0.15(H2O) cathode for rechargeable aqueous zinc-ion batteries
E-mail:,
Recently, aqueous zinc-ion batteries (AZIBs) have been gaining widespread academic interest in the energy-storage field owing to their high energy density, enhanced safety of electrochemical operation, and low cost, as well as the abundance of zinc on earth. The ammonium vanadate group contains compounds that are considered efficient energy-storage materials because they provide two-dimensional (2D) layered structures with large interlayer distances that promote the intercalation of metal ions during electrochemical processes. Here, we report a hydrated form of ammonium vanadate (NH4)0.37V2O5·0.15(H2O) with a highly crystalline rose-like microstructure, which is used as the positive electrode material in AZIBs. The ammonium vanadate cathode delivered an initial capacity of 400 mA h g-1 with 2 M ZnSO4 at the current density of 0.5 Ag-1 in a voltage range from 0.2 V to 1.4 V vs Zn2+/Zn. At a higher current density (10 A g?1), the material retained 84% of the initial discharge capacity after 1000 cycles, while displaying an excellent rate capability. Cyclic voltammetry and ex-situ XRD and XPS are used to study the reaction mechanism of ammonium vanadate cathode in the AZIBs. Unlike other ammonium vanadate’s, (NH4)0.37V2O5·0.15(H2O) undergoes co-intercalation of Zn2+ and H+ along with water molecules. There is no intermediate irreversible crystal phase formation during the discharge/charge cycles due to expandable interlaying distance. This report suggests that (NH4)0.37V2O5·0.15(H2O) can be an alternative highly stable cathode material for use in AZIBs, and it can be promising for the intercalation of the cathode in larger-sized metal-ion storage systems.
Keywords:Ammonium vanadate;nanoflakes;co- intercalation;zinc hydroxide sulphate;aqueous zinc ion batteries
- Carrillo AJ, Gonzalez-Aguilar J, Romero M, Coronado JM, Chem. Rev., 119(7), 4777 (2019)
- Widen J, Carpman N, Castellucci V, Lingfors D, Olauson J, Remouit F, Bergkvist M, Grabbe M, Waters R, Renew. Sust. Energ. Rev., 44, 356 (2015)
- Herbert GJ, Iniyan S, Sreevalsan E, Rajapandian S, Renew. Sust. Energ. Rev., 11, 1117 (2007)
- Seetharaman K, Moorthy N, Patwa S, Y. Heliyon, 5 (1), e01166 (2019).
- Nam ND, Park IJ, Kim JG, Kim HS, Mater. Res. Bull., 47(10), 2811 (2012)
- Kim T, Song W, Son DY, Ono LK, Qi Y, J. Mater. Chem. A, 7, 2942 (2019)
- Wang Q, Mao B, Stoliarov SI, J. Prog. Energy Combust. Sci., 73, 95 (2019)
- Qin M, Ren W, Meng J, Wang X, Yao X, Ke Y, Li Q, ACS Sustain. Chem. Eng., 7, 11564 (2019)
- Ren W, Qin M, Zhu Z, Yan M, Li Q, Zhang L, Liu D, Nano Lett., 17, 4713 (2017)
- Ao H, Zhao Y, Zhou J, Cai W, Zhang X, Zhu Y, Qian Y, J. Mater. Chem. A, 7, 18708 (2019)
- Liu J, Xu C, Chen Z, Ni S, Shen ZX, Green Energy Environ, 3, 20 (2018)
- Gheytani S, Liang Y, Wu F, Jing Y, Dong H, Rao KK, Chi X, Fang F, Yao Y, Adv. Sci., 4, 170046 (2017)
- Yuan D, Zhao J, Manalastas W, Kumar S, Srinivasan M, (10.1016/j.nanoms.2019.11.001).
- Fang G, Zhou J, Pan A, Liang S, ACS Energy Lett., 3, 2480 (2018)
- Shin J, Lee J, Park Y, Choi JW, Chem. Sci., 11, 2028 (2020)
- Ming J, Guo J, Xia C, Wang W, Alshareef HN, Mater. Sci. Eng. R-Rep., 135, 58 (2019)
- Tang B, Shan L, Liang S, Zhou J, Energy Environ. Sci, 12, 3288 (2019)
- Xu W, Wang Y, Nano-Micro Lett., 11, 90 (2019)
- Han M, Huang J, Liang S, Shan L, Xie X, Yi Z, Wang Y, Guo S, J. Zhou iScience, 23, 100797 (2020)
- Liu S, Kang L, Kim JM, Chun YT, Zhang J, Jung SC, Adv. Eng. Mater., 10, 200047 (2020)
- He X, Zhang H, Zhao X, Zhang P, Chen M, Zheng Z, Han Z, Zhu T, Tong Y, Lu X, Adv. Sci., 6, 190015 (2019)
- Ma L, Li N, Long C, Dong B, Fang D, Liu Z, Zhao Y, Li X, Fan J, Chen S, Zhang S, Zhi C, Adv. Funct. Mater., 29, 190614 (2019)
- Zampardi G, La Mantia F, CurrOpinElectrochem, 21, 84 (2020).
- Wan F, Niu Z, Angew. Chem.-Int. Edit., 58, 16358 (2019)
- Yang Y, Tang Y, Fang G, Shan L, GuO J, Zhang W, Wang C, Wang L, Zhou J, Lia-ng S, Energy Environ. Sci., 44
- Li X, Ma L, Zhao Y, Yang Q, Wang D, Huang Z, Liang G, Mo F, Liu Z, Zhi C, Today Energy, 14, 100361 (2019)
- He P, Zhang GB, Liao XB, Yan MY, Xu X, An QY, Liu J, Mai LQ, Adv. Eng. Mater., 8, 170246 (2018)
- Yan M, He P, Chen Y, Wang S, Wei Q, Zhao K, Xu X, An Q, Shuang Y, Shao Y, Mueller KT, Mai L, Liu J, Yang J, Adv. Mater., 30, 170372 (2018)
- Wang P, Shi X, Wu Z, Guo S, Zhou J, Liang S, Carbon Energy, 2, 294 (2020)
- Ming F, Liang H, Lei Y, Kandambeth S, Eddaoudi M, Alshareef HN, ACS EnergyLett, 3, 2602 (2018)
- Liang H, Cao Z, Ming F, Zhang W, Anjum GH, Cui Y, Cavallo L, Alshareef HN, Nano Lett., 19, 3199 (2019)
- He P, Quan Y, Xu X, Yan M, Yang W, An Q, He L, Mai L, Small, 13, 170255 (2017)
- Li C, Zhang X, He W, Xu G, Sun R, J. Power Sources, 449, 227596 (2020)
- Bischoff CF, Fitz OS, Burns J, Bauer M, Gentischer H, Birke KP, Henning HM, Biro D, J. Electrochem. Soc., 167, 020545 (2020)
- Yang Y, Tang Y, Liang S, Wu Z, Fang F, Cao X, Wang C, Lin T, Pan A, J. Nano Energy, 61, 617 (2019)
- Renard MS, Emery N, Roginskii E, Baddour-Hadjean R, Pereira-Ramos JP, J. Solid State Chem., 254, 62 (2017)
- Andrukaitis EJ, J. Power Sources, 43/44, 603 (1993)
- Hua SH, Zhong GL, J. Power Sources, 63, 93 (1996)
- He P, Zhang GB, Liao XB, Yan MY, Xu X, An QY, Liu J, Mai LQ, Adv. Eng. Mater., 8, 170246 (2018)
- Yan M, He P, Chen Y, Wang S, Wei Q, Zhao K, Xu X, An Q, Shuang Y, Shao Y, Mueller KT, Mai L, Liu J, Yang J, Adv. Mater., 30, 170372 (2018)
- Qiu N, Chen H, Yang Z, Zhu Y, Liu W, Wang Y, Chem. Commun., 56, 3785 (2020)
- Li Q, Rui X, Chen D, Feng Y, Xiao N, Gan L, Zhang Q, Yu Y, Huang S, Nano-Micro Lett., 12, 67 (2020)
- Zhang KF, Zhang GQ, Liu X, Su ZX, Li HL, J. Power Sources, 157(1), 528 (2006)
- Wu XC, Tao YR, Dong L, Hong JM, J. Mater. Chem., 14, 901 (2004)
- Tang BY, Zhou J, Fang GZ, Liu F, Zhu CY, Wang C, PAn AQ, Liang SQ, J. Mater. Chem, 7, 940 (2019)
- Yang G, Wei T, Wang C, ACS Appl. Mater. Interfaces, 10, 35079 (2018)
- Lai J, Zhu H, Zhu X, Koritala H, Wang Y, ACS Appl. Energy Mater, 2, 1988 (2019)
- Zhao Q, Chen X, Wang Z, Yang L, Qin R, Yang J, Song Y, Ding S, Weng M, Huang W, Small, 15, 190454 (2019)
- Orive J, Fernandez de Luis R, Larrea ES, Martinez-Amesti A, Altomare A, et al., Dalton Trans, 49, 3856 (2020)
- Shin J, Choi DS, Lee HJ, Jung Y, Choi JW, Adv. Eng. Mater., 9, 190008 (2019)
- Zou R, Zhang Z, Yuen MF, Sun M, Hu J, Lee CS, Zhang W, NPG Asia Mater., 7, e195 (2015)
- Bin D, Liu Y, Yang B, Huang J, Dong X, Zhang X, Wang Y, Xia Y, ACS Appl. Mater. Interfaces, 11, 20796 (2019)
- Wang L, Huang KW, Chen J, Zheng J, Sci. Adv., 5, eaax42 (2019)
- Jiang Y, Liu J, Energy Environ. Mater., 2, 30 (2019)
- Huang Y, Wang Z, Jiang Y, Li S, Wang M, Ye Y, Wu F, Xie M, Li L, Chen R, Adv. Science, 5, 180061 (2018)
- Zhang Y, Jiang H, Xu L, Gao Z, Meng C, ACS Appl. Energy Mater, 2, 7861 (2019)
- Wei R, Wang X, Xi B, Feng Z, Li H, Chen W, Jia Y, Feng J, Xiong S, ACS Appl. Energy Mater, 3, 5343 (2020)
- Tang BY, Fang GC, Zhou J, Wang LB, Lei YP, Wang C, Lin TQ, Tang Y, Liag SQ, Nano Energy, 51, 579 (2018)