화학공학소재연구정보센터
Polymer(Korea), Vol.45, No.1, 150-157, January, 2021
탄소나노튜브 기반 다층박막코팅의 난연성 향상 분석
Enhanced Flame Retardancy of Polymer-Carbon Nanotube Multi-Layer Coatings
E-mail:, ,
초록
본 연구에서는 다층박막적층 방식을 통해 고분자복합소재를 제조하여 박막필름의 물리적 성질과 난연 특성을 분석하였다. 키토산-카테콜(CH-C)과 몬모릴로나이트(MMT)를 교대로 적층하여 CH-C/MMT를 제조하였고 소수성 탄소나노재료인 탄소나노튜브(CNT)를 MMT 수용액에서 안정화시킨 후 다층박막 방식을 이용하여 CH-C/CNTMMT를 제작하였다. 두 시스템 모두 적층횟수에 따라 필름 두께가 선형적으로 증가하는 특성을 보였으며 주사탐침 현미경(AFM)과 주사전자 현미경(SEM) 분석을 통해 나노스케일의 MMT와 CNT 구조를 확인할 수 있었다. 수직/수평 화염 테스트와 콘 칼로리미터 분석을 통해 복합소재의 난연성을 확인할 수 있었다. 층상 무기물인 MMT에 의해 연소 시 char가 형성되어 연소를 방해하고 이를 통해 면직물과 PU 폼에 대한 난연성이 부여되었다. 나아가, 탄소나노재료인 CNT의 첨가를 통해 MMT와 CNT간 상호인력과 CNT의 높은 열적 안정성으로 인해 CH-C/CNT-MMT의 난연성이 더욱 향상되었다.
The polymer nanocomposites were prepared via layer-by-layer assembly and their physical and flame retardancy were analyzed. Chitosan-catechol (CH-C)/montmorillonite (MMT) thin films were fabricated by alternately depositing positively charged CH-C and negatively charged MMT in an aqueous solution. CH-C/carbon nanotube (CNT)-MMT nanocomposites were assembled with the CNT stabilized in MMT aqueous solutions. Both polymer nanocomposites exhibited that the film thickness increased linearly with the number of layers deposited, and that nano-scaled MMT and CNT structures were visualized using atomic force microscopy (AFM) and scanning electronic microscope (SEM). The flame retardancy of CH-C/MMT and CH-C/CNT-MMT assemblies were confirmed by vertical/horizontal flame tests and cone calorimeter. Layered inorganic MMT creates the char upon the flame, which impedes combustion and consequently imparts flame retardancy. By introducing CNT into the nanocomposites, the flame retarding characteristics in CH-C/CNT-MMT films were further improved, which is most likely due to the strong interaction between MMT and CNT and high thermal stability of CNT.
  1. Alongi J, Carosio F, Frache A, Malucelli G, Carbohydr. Polym., 92, 114 (2013)
  2. Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Mater. Sci. Eng. R-Rep., 63, 100 (2009)
  3. Li QL, Wang XL, Wang DY, Wang YZ, Feng XN, Zheng GH, J. Appl. Polym. Sci., 122(1), 342 (2011)
  4. Hwang SS, Kim YH, Choi KW, Jin SH, Baeck SH, Shim SE, Polym. Korea, 43(6), 965 (2019)
  5. Joo AR, Lee JH, Park YG, Lee SH, Polym. Korea, 42(2), 288 (2018)
  6. Gu J, Lv Z, Wu Y, Guo Y, Tian L, Qiu H, Li W, Zhang Q, Compos. Part A Appl. Sci. Manuf., 94, 209 (2017)
  7. Yang X, Tang L, Guo Y, Liang C, Zhang Q, Kou K, Gu J, Compos. Part A Appl. Sci. Manuf., 101, 237 (2017)
  8. Wang JL, Zhang DC, Zhang Y, Cai W, Yao CX, Hu Y, Hu WZ, J. Hazard. Mater., 362, 482 (2019)
  9. Decher G, Hong JD, Schmitt J, Thin Solid Films, 210, 831 (1992)
  10. Park SJ, Yun SH, Choi WK, Cho SK, Lee HK, Huh KM, Polym. Korea, 39(5), 761 (2015)
  11. Iler R, J. Colloid Interface Sci., 21, 569 (1966)
  12. Cho C, Son J, Nanomaterials, 10, 41 (2019)
  13. Richardson JJ, Cui JW, Bjornmalm M, Braunger JA, Ejima H, Caruso F, Chem. Rev., 116(23), 14828 (2016)
  14. An Q, Huang T, Shi F, Chem. Soc. Rev., 47, 5061 (2018)
  15. Tiu BDB, Kernan DL, Tiu SB, Wen AM, Zheng Y, Pokorski JK, Advincula RC, Steinmetz NF, Nanoscale, 9, 1580 (2017)
  16. Cho C, Song Y, Choi K, Grunlan JC, ACS Appl. Polym. Mater., 1, 1942 (2019)
  17. Li H, Wang X, He Y, Peng L, Cellulose, 26, 2055 (2019)
  18. Vaterrodt A, Thallinger B, Daumann K, Koch D, Guebitz GM, Ulbricht M, Langmuir, 32(5), 1347 (2016)
  19. Cho C, Song Y, Allen R, Wallace KL, Grunlan JC, J. Mater. Chem. C, 6, 2095 (2018)
  20. Qiu XQ, Li ZW, Li XH, Zhang ZJ, Chem. Eng. J., 334, 108 (2018)
  21. Carosio F, Alongi J, ACS Appl. Mater. Interfaces, 8, 6315 (2016)
  22. Patra D, Vangal P, Amanda AC, Cho C, Regev O, Grunlan JC, ACS Appl. Mater. Interfaces, 6, 16903 (2014)
  23. Lu C, Gao XP, Yao HH, Cao CL, Luo YJ, Polym. Degrad. Stabil., 153, 75 (2018)
  24. Kim H, Park JW, Lee JH, Jang SW, Kim HJ, Choi Y, Choy JH, Yang JH, J. Therm. Anal. Calorim., 132, 2009 (2018)
  25. Hu YP, Wang XM, Li J, Ind. Eng. Chem. Res., 55(20), 5892 (2016)
  26. Ryu JH, Hong S, Lee H, Acta Biomater., 27, 101 (2015)
  27. Shang S, Zeng W, Tao XM, J. Mater. Chem., 21, 7274 (2011)
  28. Cho C, Song Y, Allen R, Wallace KL, Grunlan JC, J. Mater. Chem. C, 6, 2095 (2018)
  29. Luckham PE, Rossi S, Adv. Colloid Interface Sci., 82, 43 (1999)
  30. Etika KC, Liu L, Cox MA, Grunlan JC, Colloids Surf. A: Physicochem. Eng. Asp., 489, 19 (2016)
  31. Cho C, Culebras M, Wallace KL, Song Y, Holder K, Hsu JH, Yu C, Grunlan JC, Nano Energy, 28, 426 (2016)
  32. Kharlampieva E, Sukhishvili SA, J. Macromol. Sci.: Part C: Polym. Rev., 46, 377 (2006)
  33. Jayaraman K, Hsu L, McCarthy TJ, Langmuir, 23(6), 3260 (2007)
  34. Choi K, Seo S, Kwon H, Kim D, Park YT, J. Mater. Sci., 53(16), 11433 (2018)
  35. Holder KM, Cain AA, Plummer MG, Stevens BE, Odenborg PK, Grunlan JC, Macromol. Mater. Eng., 301, 665 (2016)
  36. Jang W, Chung IJ, Kim J, Seo S, Park YT, Choi K, J. Korean Phys. Soc., 72, 1052 (2018)
  37. Son B, Hwang TS, Goo DC, Polym. Korea, 31(5), 404 (2007)