Korean Journal of Chemical Engineering, Vol.38, No.2, 264-275, February, 2021
A breakage model with different liquid properties for pressurized bubble columns in a homogeneous regime
E-mail:
The bubble breakage rate in gas-liquid bubble columns increases for organic liquid and at high pressure. This study developed a breakage model that accounts for different liquid properties in gas-liquid pressurized bubble columns in the homogeneous regime. The Luo (1996), Lehr (2002), and Wang (2003) breakage models, which are widely used for the population balance equation (PBE) of bubble columns, were compared in terms of the total breakage rate, daughter size distribution, and computational time. The model with two empirical equations, modified from Luo’s breakage kernel, was proposed. One represented bubble deformation behavior in different liquid properties in terms of buoyancy, surface tension, and viscosity. The other considered the effect of operating pressure (or gas density) on the breakage rate. The modified model was compared with experimental data and a rigorous breakage model from the literature. The proposed breakage model shows good agreement with experimental data and computational efficiency. This breakage model is applicable for computational fluid dynamics with PBE in pressurized bubble columns with organic liquids.
- Tran BV, Nguyen DD, Ngo SI, Lim YI, Kim B, Lee DH, Go KS, Nho NS, AIChE J., 65, e16685 (2019)
- Lee J, Yasin M, Park S, Chang IS, Ha KS, Lee EY, Lee J, Kim C, Korean J. Chem. Eng., 32(6), 1060 (2015)
- Syed AH, Boulet M, Melchiori T, Lavoie JM, Front. Chem., 5, 68 (2017)
- Lehr F, Millies M, Mewes D, AIChE J., 48(11), 2426 (2002)
- Wang TF, Wang JF, Jin Y, Chem. Eng. Sci., 58(20), 4629 (2003)
- Im HJ, Park JI, Lee JW, Korean J. Chem. Eng., 36(10), 1680 (2019)
- Kumar S, Khanna A, Korean J. Chem. Eng., 31(11), 1964 (2014)
- Wilkinson PM, Van Schayk A, Spronken JPM, van Dierendonck LL, Chem. Eng. Sci., 48, 1213 (1993)
- Xing CT, Wang TF, Guo KY, Wang JF, AIChE J., 61(4), 1391 (2015)
- Rudkevitch D, Macchi A, Can. J. Chem. Eng., 86(3), 293 (2008)
- Besagni G, Inzoli F, Flow Meas. Instrum., 67, 55 (2019)
- Calderon CJ, Ancheyta J, Fuel, 216, 852 (2018)
- Yan P, Jin HB, He GX, Guo XY, Ma L, Yang SH, Zhang RY, Chem. Eng. Sci., 199, 137 (2019)
- Bae K, Go GS, Noh NS, Lim YI, Bae J, Lee DH, Chem. Eng. J., 386, 121339 (2020)
- Vik CB, Solsvik J, Hillestad M, Jakobsen HA, Comput. Chem. Eng., 110, 115 (2018)
- Chen P, Dudukovic MP, Sanyal J, AIChE J., 51(3), 696 (2005)
- Guo KY, Wang TF, Liu YF, Wang JF, Chem. Eng. J., 329, 116 (2017)
- Yan P, Jin HB, He GX, Guo XY, Ma L, Yang SH, Zhang RY, Chem. Eng. Res. Des., 154, 47 (2020)
- Luo H, Svendsen HF, AIChE J., 42(5), 1225 (1996)
- Zhang H, Yang G, Sayyar A, Wang T, Chem. Eng. J., 386, 121484 (2020)
- Rollbusch P, Tuinier M, Becker M, Ludwig M, Grunewald M, Franke R, Chem. Eng. Technol., 36(9), 1603 (2013)
- Yang GY, Guo KY, Wang TF, Chem. Eng. Sci., 170, 251 (2017)
- Prince MJ, Blanch HW, AIChE J., 36, 1485 (1990)
- Tsouris C, Tavlarides LL, AIChE J., 40(3), 395 (1994)
- Solsvik J, Tangen S, Jakobsen HA, Rev. Chem. Eng., 29(5), 241 (2013)
- Grund G, Schumpe A, Deckwer WD, Chem. Eng. Sci., 47, 3509 (1992)
- Martinez-Bazan C, Montanes JL, Lasheras JC, J. Fluid Mech., 401, 157 (1999)
- Maass S, Kraume M, Chem. Eng. Sci., 70, 146 (2012)
- Andersson R, Andersson B, AIChE J., 52(6), 2020 (2006)
- Hesketh RP, Etchells AW, Russell TWF, Chem. Eng. Sci., 46, 1 (1991)
- Rodriguez-Rodriguez J, Martinez-Bazan C, Montanes JL, Meas. Sci. Technol., 14, 1328 (2003)
- Laurie DP, Math. Comput., 66, 1133 (1997)
- Shi WB, Yang J, Li G, Yang XG, Zong Y, Cai XY, Chem. Eng. Sci., 187, 391 (2018)
- Vejrazka J, Zednikova M, Stanovsky P, AIChE J., 64(2), 740 (2018)
- Razzaghi K, Shahraki F, AIChE J., 62(12), 4508 (2016)