Korean Chemical Engineering Research, Vol.59, No.1, 112-117, February, 2021
다이타이로신 공유결합으로 자기조립된 펩타이드 나노입자의 합성
Synthesis of Self-Assembled Peptide Nanoparticles Based on Dityrosine Covalent Bonds
E-mail:
초록
본 연구에서는 생물학적 공유결합인 다이타이로신 결합을 모방하여 비가역적 공유결합을 기반으로 한 펩타이드의 자기조립 방법을 연구하였다. 고밀도의 다이타이로신 결합을 달성하기 위해 Tyr-Tyr-Leu-Tyr-Tyr (YYLYY) 의 서열을 갖는 펩타이드 단량체를 선택하였다. 다이타이로신 결합으로 자기조립 된 펩타이드 나노입자는 가시광선 하에서 Ru(BPY)3Cl2 촉매를 사용하여 단일공정 광가교를 통해 합성되었다. 펩타이드 나노 입자의 크기에 대한 각 성분의 농도 효과는 동적 광산란, UV-Vis 분광법 및 투과 전자 현미경을 사용하여 확인하였다. 이를 통해 130 nm~350 nm범위의 펩타이드 나노입자의 크기별 최적의 합성 조건을 제시하였다.
In this study, a method of self-assembly of peptides based on irreversible covalent bonds was studied by mimicking a biological covalent bond, dityrosine bond. A tyrosine-rich short peptide monomer having the sequence of Tyr-Tyr-Leu-Tyr-Tyr (YYLYY) was selected to achieve a high-density of dityrosine bond. The peptide nanoparticles covalently self-assembled with dityrosine bonds were synthesized by one-step photo-crosslinking of a peptide using a ruthenium catalyst under visible light. The effect of the concentration of each component for the size of the peptide nanoparticle was studied using dynamic light scattering, UV-Vis spectroscopy, and transmission electron microscopy. As a result, the synthesis conditions for size of the peptide nanoparticles ranging from 130 nm to 350 nm were optimized.
- Lim Y, Moon KS, Lee M, Chem. Soc. Rev., 38(4), 925 (2009)
- Santisa ED, Ryadnov MG, Chem. Soc. Rev., 44, 8288 (2015)
- Hu X, Liao M, Gong H, Zhang L, Cox H, Waigh TA, Lu JR, Curr. Opin. Colloid Interface Sci., 45, 1 (2020)
- Mann S, Nat. Mater., 8(10), 781 (2009)
- Baek K, Hwang I, Roy I, Shetty D, Kim K, Accounts Chem. Res., 48, 2221 (2015)
- Luo TZ, Kiick KL, J. Am. Chem. Soc., 137(49), 15362 (2015)
- Okesola BO, Mata A, Chem. Soc. Rev., 47(10), 3721 (2018)
- Elvin CM, Carr AG, Huson MG, Maxwell JM, Pearson RD, et al., Nature, 437(7061), 999 (2005)
- Partlow BP, Applegate MB, Omenetto FG, Kaplan DL, ACS Biomater. Sci. Eng., 2(12), 2108 (2016)
- Burrows M, Shaw SR, Sutton GP, BMC Biol., 6(1), 41 (2008)
- Cui H, Webber MJ, Stupp SI, Pept. Sci., 94(1), 1 (2010)
- Fancy DA, Kodadek T, Proc. Natl. Acad. Sci. U. S. A., 96(11), 6020 (1999)
- Ding Y, Li Y, Qin M, Cao Y, Wang W, Langmuir, 29(43), 13299 (2013)
- Zhang D, Peng H, Sun B, Lyu S, Fiber. Polym., 18(10), 1831 (2017)
- Min KL, Kim DH, Lee HJK, Lin L, Kim DP, Angew. Chem.-Int. Edit., 130(20), 5732 (2018)
- Min KI, Yun G, Jang Y, Kim KR, Ko YH, Jang HS, Lee YS, Kim K, Kim DP, Angew. Chem.-Int. Edit., 55(24), 6925 (2016)
- Malencik DA, Sprouse JF, Swanson CA, Anderson SR, Anal. Biochem., 242(2), 202 (1996)
- Lehrer SS, Fasman GD, Biochemistry, 6(3), 757 (1967)
- Correia M, Neves-Petersen MT, Jeppesen PB, Gregersen S, Petersen SB, PLoS One, 7(12), e50733 (2012)