Macromolecular Research, Vol.28, No.13, 1276-1281, December, 2020
Polymer-Directed Crystallization of Luteolin, Quercetin, and Myricetin
E-mail:
For active pharmaceutical ingredients, the bioavailability, stability, and processability critically depend on crystal habit and size. The presence of polymers in a crystallization solution can engineer broader ranges of crystal habit and size, but only in certain cases. To elucidate the underlying mechanism of this selectivity, polymer- directed crystallization was systematically investigated here for a series of natural polyphenols, namely luteolin, quercetin, and myricetin. Significant changes in crystal habit and size were observed in the cases of quercetin and myricetin. Peak broadening in X-ray diffraction profiles and significant amounts of polymer within the crystallized particles suggested possible composite structure formation via a non-classical
crystallization mechanism. Polyethyleneimine and poly(vinyl alcohol) showed relatively
stronger crystal engineering effects than poly(ethylene glycol). The results facilitate understanding of the specific interactions important for crystal engineering and thus preparing polyphenols to attain wide ranges of habit and particle size for various applications.
- Laramy CR, O’Brien MN, Mirkin CA, Nat. Rev. Mater., 4, 201 (2019)
- Wang W, Qi H, Zhou T, Mei S, Han L, Higuchi T, Jinnai H, Li CY, Nat. Commun., 7, 10599 (2016)
- Lee H, Lee J, J. Cryst. Growth, 374, 37 (2013)
- Munk T, Baldursdottir S, Hietala S, Rades T, Kapp S, Nuopponen M, Kalliomaki K, Tenhu H, Rantanen J, Mol. Pharm., 9, 1932 (2012)
- Prasad D, Chauhan H, Atef E, Mol. Pharm., 13, 756 (2016)
- Czyzewski AM, Chen S, Bhamidi V, Yu S, Marsden I, Ding C, Becker C, Napier JJ, Org. Process Res. Dev., 21, 1493 (2017)
- Poornachary SK, Chia VD, Yani Y, Han G, Chow PS, Tan RBH, Cryst. Growth Des, 17, 4844 (2017)
- De Yoreo JJ, Rev. Mineral Geochem., 54, 57 (2003)
- Liu Z, Wen XD, Wu XL, Gao YJ, Chen HT, Zhu J, Chu PK, J. Am. Chem. Soc., 131(26), 9405 (2009)
- Colfen H, Antonietti M, Angew. Chem.-Int. Edit., 44, 5576 (2005)
- Fang J, Ding B, Gleiter H, Chem. Soc. Rev., 40, 5347 (2011)
- Choi H, Lee H, Lee MK, Lee J, J. Pharm. Sci-US, 101, 2941 (2012)
- Van Acker SABE, Van Den Berg D, Tromp MNJL, Griffioen DH, Van Bennekom WP, Van Der Vijgh WJF, Bast A, Free Radical Bio. Med., 20, 331 (1996)
- Nichols JA, Katiyar SK, Arch. Dermatol. Res., 302, 71 (2009)
- Cushnie TPT, Lamb AJ, Int. J. Antimicrob. Ag., 38, 99 (2011)
- Galati G, O’Brien PJ, Free Radical Bio. Med., 37, 287 (2004)
- Wang Z, Zhao S, Song R, Zhang W, Zhang S, Li J, Sci. Rep., 7 (2017)
- Leopoldini M, Pitarch IP, Russo N, Toscano M, J. Phys. Chem. A, 108(1), 92 (2004)
- Halake K, Birajdar M, Lee J, J. Ind. Eng. Chem., 35, 1 (2016)
- Ong KC, Khoo HE, General Pharmacology: The Vascular System, 29, 121 (1997)
- Halake K, Cho SV, KiM JS, Lee TW, Cho YH, Chi SW, Park MJ, Kim KH, Lee DH, Ju H, ChoI YH, Jang MS, Choe GH, Lee JH, Macromol. Res., 26(2), 93 (2018)
- Liu M, Hong C, Yao Y, Shen H, Ji G, Li G, Xie Y, Eur. J. Pharm. Biopharm., 107, 151 (2016)
- Li B, Konecke S, Harich K, Wegiel L, Taylor LS, Edgar KJ, Carbohydr. Polym., 92, 2033 (2013)
- Ren S, Liu M, Hong C, Li G, Sun J, Wang J, Zhang L, Xie Y, Acta Pharm. Sinica B, 9, 59 (2019)
- Zimmermann A, Millqvistfureby A, Elema M, Hansen T, Mullertz A, Hovgaard L, Eur. J. Pharm. Biopharm., 71, 109 (2009)
- Sheng F, Chow PS, Yuancai D, Tan RBH, Cryst. Growth Des., 18, 3089 (2018)
- Khan S, de Matas M, Zhang J, Anwar J, Cryst. Growth Des., 13, 2766 (2013)
- Choi H, Lee H, Lee MK, Lee J, J. Pharm. Sci-US, 101, 2941 (2012)
- Gajera BY, Shah DA, Dave RH, Int. J. Pharm., 559, 348 (2019)
- Yuan B, Guo J, Bai S, J. Mater. Chem. C, 8, 6478 (2020)
- Muresan-Pop M, Pop MM, borodi G, Todea M, Nagy-Simon T, Simon S, J. Mol. Struct., 1141, 607 (2017)
- Muresan-Pop M, Chiriac LB, Martin F, Simon S, Compos. Part B-Eng., 89, 60 (2016)
- Shen Y, Chen R, Yu X, Wang Q, Jungjohann KL, Dayeh SA, Wu T, Nano Lett., 16, 4158 (2016)